
THE UNIVERSITY OF CHICAGO

MEASUREMENT OF THE DALITZ PARAMETERS IN

KL → π+π−π0 DECAYS.

A DISSERTATION SUBMITTED TO

THE FACULTY OF THE DIVISION OF THE PHYSICAL SCIENCES

IN CANDIDACY FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

DEPARTMENT OF PHYSICS

BY

MIGUEL A. BARRIO

CHICAGO, ILLINOIS

DECEMBER 2001



To Jeff, my family, and all my friends.



TABLE OF CONTENTS

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 The Dalitz Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Isospin Symmetries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Radiative contributions . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Previous Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Motivation for this Experiment . . . . . . . . . . . . . . . . . . . . . 4
1.5 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 THE KTEV APPARATUS . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1 The Beamline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 The Regenerator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 The Drift Chambers . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Analysis Magnet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5 Calorimeter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.6 Trigger and Veto counters . . . . . . . . . . . . . . . . . . . . . . . . 15
2.7 The Trigger System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.7.1 Level 1 Trigger . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.7.2 Level 2 Trigger . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.7.3 Level 1 and Level 2 Trigger Definitions . . . . . . . . . . . . . 21
2.7.4 Level 3 Trigger . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 THE KTEV 1997 RUN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.1 Data Taking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1.1 Calorimeter Readout . . . . . . . . . . . . . . . . . . . . . . . 23
3.1.2 Drift Chamber System . . . . . . . . . . . . . . . . . . . . . . 24
3.1.3 Miscellaneous Other Problems . . . . . . . . . . . . . . . . . . 27
3.1.4 Drift Chamber Improvements for the 1999 KTeV Run . . . . . 27

3.2 Data Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

iii



iv

4 KL → π+π−π0 SAMPLE SELECTION . . . . . . . . . . . . . . . . . . . . 30
4.1 Hardware Trigger Requirements: Level 1 . . . . . . . . . . . . . . . . 30

4.1.1 Trigger Hodoscope Banks . . . . . . . . . . . . . . . . . . . . 30
4.1.2 Drift Chambers as Hit Counters . . . . . . . . . . . . . . . . . 30
4.1.3 Vetoes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2 Level 2 Trigger Requirements . . . . . . . . . . . . . . . . . . . . . . 31
4.3 Level 3 Trigger Requirements . . . . . . . . . . . . . . . . . . . . . . 31
4.4 Charged Pion Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.5 π0 Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.6 Pion Showers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.7 Analysis Cuts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.7.1 Trigger Verification . . . . . . . . . . . . . . . . . . . . . . . . 34
4.7.2 Veto Counters . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.7.3 Aperture and Fiducial Cuts . . . . . . . . . . . . . . . . . . . 38
4.7.4 Extra Particle Cuts . . . . . . . . . . . . . . . . . . . . . . . . 40
4.7.5 Track Quality Cuts . . . . . . . . . . . . . . . . . . . . . . . . 40
4.7.6 Photon Quality Cuts . . . . . . . . . . . . . . . . . . . . . . . 40
4.7.7 Pion Identification Cuts . . . . . . . . . . . . . . . . . . . . . 40
4.7.8 Kinematic Cuts . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.7.9 Kinematic boundary in the Dalitz Plane . . . . . . . . . . . . 41

4.8 Backgrounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.9 Final Analysis Cuts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5 DETECTOR SIMULATION . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.1 Kaon Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.1.1 Kaon Production . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.1.2 Kaon Transport . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.1.3 Kaon Decay . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.1.4 Tracing the Decay Products . . . . . . . . . . . . . . . . . . . 49

5.2 Drift Chamber Simulation . . . . . . . . . . . . . . . . . . . . . . . . 49
5.3 Calorimeter Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.3.1 Photon and Electron Showers . . . . . . . . . . . . . . . . . . 51
5.3.2 Pion Showers . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.4 Veto Counters Simulation . . . . . . . . . . . . . . . . . . . . . . . . 52
5.5 Accidental Overlays . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.6 Trigger Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.7 Generating MIP events in the Monte Carlo . . . . . . . . . . . . . . . 53
5.8 Acceptance in the Dalitz Plane . . . . . . . . . . . . . . . . . . . . . 54

6 DALITZ ANALYSIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.1 Efficiency of Minimum Ionizing Particles in the Calorimeter . . . . . 57
6.2 Mass Constrained Vertex Reconstruction . . . . . . . . . . . . . . . . 58

6.2.1 Resolution of the reconstructed Dalitz variables . . . . . . . . 62



v

6.2.2 Data resolution . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.3 Measurement of the Radiative Cross-section . . . . . . . . . . . . . . 68
6.4 Fitting the Dalitz Parameters . . . . . . . . . . . . . . . . . . . . . . 68

7 SYSTEMATIC STUDIES . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
7.1 Kinematic Limits for the Dalitz Variables . . . . . . . . . . . . . . . . 71

7.1.1 Charged Invariant Mass Resolution . . . . . . . . . . . . . . . 71
7.1.2 Kinematic Limits in the Dalitz Plane: The Mask . . . . . . . 73

7.2 MIP Efficiency Systematic . . . . . . . . . . . . . . . . . . . . . . . . 73
7.2.1 Selection cut systematics . . . . . . . . . . . . . . . . . . . . . 74

7.3 Discrepancies Between Data and Monte Carlo . . . . . . . . . . . . . 75
7.3.1 Scales and Resolutions . . . . . . . . . . . . . . . . . . . . . . 75
7.3.2 Drift Chamber Illumination . . . . . . . . . . . . . . . . . . . 75
7.3.3 Energy and Track Momentum Slopes . . . . . . . . . . . . . . 75

7.4 “Half” Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
7.5 Radiative Corrections . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
7.6 Backgrounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
7.7 Additional Sources of Systematic Biases . . . . . . . . . . . . . . . . 86

7.7.1 Drift Chamber System Alignment . . . . . . . . . . . . . . . . 91
7.7.2 Cracks in the Trigger Hodoscope Bank and the Calorimeter . 91

7.8 Systematic Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

8 ANALYSIS OF OUR RESULT . . . . . . . . . . . . . . . . . . . . . . . . 92
8.1 Quality of Fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
8.2 Higher Order Dalitz Parameters? . . . . . . . . . . . . . . . . . . . . 92

9 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
9.1 Theoretical Implications . . . . . . . . . . . . . . . . . . . . . . . . . 100

9.1.1 Isospin Symmetries . . . . . . . . . . . . . . . . . . . . . . . . 100
9.1.2 Higher Order terms in the Dalitz Distribution . . . . . . . . . 105

9.2 Final Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

A KAON PHENOMENOLOGY . . . . . . . . . . . . . . . . . . . . . . . . . 106
A.1 Kaon Phenomenology . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
A.2 KL → π+π−π0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

B DATA CRUNCH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
B.1 Crunch from split tapes: First stage . . . . . . . . . . . . . . . . . . . 109

B.1.1 Special selection: Second stage . . . . . . . . . . . . . . . . . . 110
B.1.2 Ntuple generation . . . . . . . . . . . . . . . . . . . . . . . . . 111

C MASS CONSTRAINTS IN VERTEX RECONSTRUCTION . . . . . . . . 113



vi

D MEASUREMENT OF THE BRANCHING RATIO AND FORM FACTORS
FOR THE KL → π+π−π0γ DECAY . . . . . . . . . . . . . . . . . . . . . 116
D.1 Data Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
D.2 Monte Carlo Simulation . . . . . . . . . . . . . . . . . . . . . . . . . 117

D.2.1 PHOTOS reweighting . . . . . . . . . . . . . . . . . . . . . . 117
D.3 Background Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 117
D.4 Angular distribution of the radiated photon . . . . . . . . . . . . . . 118
D.5 Form Factor Measurement . . . . . . . . . . . . . . . . . . . . . . . . 123
D.6 Systematic Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . 125
D.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

E POST-COMPLETION: MIP DISCREPANCY RESOLVED . . . . . . . . 130

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133



LIST OF FIGURES

2.1 KTeV beam collimation system diagram. . . . . . . . . . . . . . . . 8
2.2 KTeV detector diagram. . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Drift chamber wire configuration. . . . . . . . . . . . . . . . . . . . 11
2.4 Cesium-Iodide calorimeter crystal arrangement. . . . . . . . . . . . . 14
2.5 Energy/momentum distribution for electrons. . . . . . . . . . . . . . 16
2.6 Calorimeter energy resolution. . . . . . . . . . . . . . . . . . . . . . 17
2.7 Mass of γγ pair in KL → π+π−π0 data. . . . . . . . . . . . . . . . . 18
2.8 Trigger hodoscope banks. . . . . . . . . . . . . . . . . . . . . . . . . 19
2.9 Collar Anti geometry. . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1 “Sum of Distances” distribution. . . . . . . . . . . . . . . . . . . . . 25
3.2 High-SOD and missing-hit probability distributions. . . . . . . . . . 28

4.1 Energy distribution of calorimeter clusters from charged tracks. . . . 35
4.2 Sample event with one charged pion showering in the calorimeter. . 36
4.3 Sample “MIP”event in the calorimeter. . . . . . . . . . . . . . . . . 37
4.4 Cell separation cut diagram. . . . . . . . . . . . . . . . . . . . . . . 39
4.5 Invariant mass distributions for π+π−π0 and γγ in data. . . . . . . . 42
4.6 Kaon energy, track momentum, and photon cluster energy distribu-

tions in data. The dashed lines indicate analysis cut values. . . . . . 43
4.7 Dalitz plane distribution of data points. . . . . . . . . . . . . . . . . 44
4.8 Dalitz plane distribution of data points, lego plot. . . . . . . . . . . 45

5.1 Track cluster energy cut in Monte Carlo. . . . . . . . . . . . . . . . 55
5.2 Detector acceptance. . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.1 “Minimum Ionizing Particle” (MIP) probability in the calorimeter. . 59
6.2 MIP probability change as a function of position in the calorimeter. 60
6.3 Final MIP distributions after efficiency reweighting. . . . . . . . . . 61
6.4 Z vertex position resolution. . . . . . . . . . . . . . . . . . . . . . . 63
6.5 X and Y vertex positions resolutions. . . . . . . . . . . . . . . . . . 64
6.6 Dalitz variables resolution. . . . . . . . . . . . . . . . . . . . . . . . 65
6.7 Diagram of momenta for “missing particle momentum” frame. . . . 66
6.8 Tracking resolution in terms of “missing particle momentum”. . . . . 67

7.1 Distribution of reconstructed values for the Y Dalitz variable. . . . . 72

vii



viii

7.2 Kaon and neutral pion reconstructed invariant masses. . . . . . . . . 76
7.3 Drift chamber illumination by charged tracks. . . . . . . . . . . . . . 77
7.4 Drift chamber 1 illumination in the Y direction. . . . . . . . . . . . 78
7.5 Kaon energy slope in π+π−π0 MIP events. . . . . . . . . . . . . . . 80
7.6 Track momentum distribution, reweighted by the Kaon energy slope. 81
7.7 Kaon energy distribution, reweighted by the track momentum slope. 82
7.8 Systematic tests. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
7.9 Half-sample and run periods studies. . . . . . . . . . . . . . . . . . . 84
7.10 Low-mass radiative tail in data and Monte Carlo. . . . . . . . . . . 87
7.11 Invariant mass distribution for reconstructed π+π−π0γ events. . . . 88
7.12 Data and PHOTOS contributions in the center of mass frame. . . . 89
7.13 Total transverse momentum of the kaon in π+π−π0 events. . . . . . 90

8.1 Invariant mass distribution for the π+π− system. . . . . . . . . . . . 93
8.2 X and Y Dalitz variable data and Monte Carlo overlays. . . . . . . . 95
8.3 X and Y Dalitz variable data and Monte Carlo overlays, with higher

order terms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
8.4 Invariant mass distribution for the π+π− system, after fitting with

the higher order function. . . . . . . . . . . . . . . . . . . . . . . . . 97
8.5 Systematic studies for g, h, k, for higher order fit. . . . . . . . . . . . 98
8.6 Systematic studies for m,n, for higher order fit. . . . . . . . . . . . . 99

9.1 History of KL → π+π−π0 Dalitz parameter measurements. . . . . . . 101
9.2 cos2β values, calculated for various Dalitz parameters measurements. 104

C.1 Schematic representation of particle positions in the decay region. . 114

D.1 Energy distribution of radiative photon in the center of mass. . . . . 118
D.2 Radiative sample control plots. . . . . . . . . . . . . . . . . . . . . . 119
D.3 Timing χ2 and extra cluster energy distributions. . . . . . . . . . . . 120
D.4 Invariant mass distribution of π+π−π0γ as a function of photon en-

ergy ECM
γ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

D.5 Angular distribution of the radiative photon in the π+π− center-of-
mass frame. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

D.6 Acceptance for radiative events. . . . . . . . . . . . . . . . . . . . . 123
D.7 Measurement of π+π−π0 γ form factor. . . . . . . . . . . . . . . . . 125
D.8 Invariant mass distribution of two photons from the π0 decay. . . . . 126
D.9 Half-sample studies. . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

E.1 Systematic tests. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
E.2 History of KL → π+π−π0 Dalitz parameter measurements. . . . . . . 132



LIST OF TABLES

4.1 Final selection cuts. . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.2 π+π−π0 event yields in data and Monte Carlo. . . . . . . . . . . . . 46

6.1 Extra cuts for radiative analysis. . . . . . . . . . . . . . . . . . . . . 68
6.2 Dalitz parameter fit, allowing all parameters to float. . . . . . . . . . 70
6.3 Nominal Dalitz parameter fit. . . . . . . . . . . . . . . . . . . . . . . 70

8.1 Higher order Dalitz parameter fit. . . . . . . . . . . . . . . . . . . . 94

9.1 R+−0 and R000 values calculated for various Dalitz measurements. . 103

D.1 Special selection cuts for the radiative measurement. . . . . . . . . . 116
D.2 Systematic uncertainties for the radiative branching ratio measure-

ment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
D.3 Statistical and systematic uncertainties for the radiative form factors.129

ix



ABSTRACT

We measured the Dalitz parameters for the KL → π+π−π0 decay using data from
the KTeV 1997 run. We obtained the following values for the Dalitz parameters:
g = 0.7065 ± 0.0077, h = 0.096 ± 0.013, and k = 0.0216 ± 0.0026. The fit to the
CP violating parameters j and f gave results that are consistent with zero. We
also measured the radiative branching ratio Br(KL → π+π−π0γ , Eγ > 10 MeV ) =
(1.66± 0.05)× 10−4), which is in good agreement with theoretical predictions.
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CHAPTER 1
INTRODUCTION

The study of neutral kaon decays into hadrons has been a constant subject of in-
terest over the years. In the 1950’s Pais, Gell-Mann [1] and others first speculated
about kaons and the possibility that symmetry breaking weak interactions would
allow particle and anti-particle to mix. In 1960, Weinberg [2] speculated about the
possibility of testing the ∆I = 1/2 isospin rule using K+ → 3π decays. In 1963,
Luers et al. [3] observed kaon decays to three pions for the first time. Since then,
many measurements involving neutral kaons decaying to three-pion states have been
performed.

The KTeV detector was designed to measure direct CP violation in kaon decays.
This involves collecting large numbers of π+π− and π0π0 kaon decay events. One of
the detector’s main attributes is its ability to reconstruct charged and neutral decay
products with high precision. A large number of other kaon decay modes was also
collected for calibration and cross-checks. After all selection cuts, our data sample
has 1.6 million KL → π+π−π0 events, more than three times that of the previous
measurement. It is natural to use this sample to measure the π+π−π0 cross-section
parameters.

1.1 The Dalitz Parameters

The Dalitz distribution describes the probability of a final state momentum configu-
ration in the KL to π+π−π0 decay; the Dalitz parameters are the coefficients of this
distribution. There are three particles in the final state in the KL → π+π−π0 decay.
Since we have 4-momentum conservation and rotational symmetry constraints, the
number of independent degrees of freedom is just two. The natural variables for
describing the cross-section of a three particle decay are the momentum transfers in
the center of mass frame

Si = (PK − Pi)
2 (i = 1, 2, 3 for π+, π−, π0) (1.1)

These are not independent, however, since their sum is

S0 = 1
3

∑
i Si = 1

3
(m2

K + 2m2
π+ + m2

π0) (1.2)

The Dalitz probability distribution is usually parametrized in terms of two indepen-
dent Lorentz-invariant quantities X and Y , defined in terms of Si and S0 by

1



2

X =
S2 − S1

m2
π+

, Y =
S3 − S0

m2
π+

. (1.3)

In the center of mass frame, the variable X is proportional to the difference of kinetic
energy between the charged pions. The variable Y is proportional to the square of
the momentum of the neutral pion, and since we have momentum conservation, this
means it is also proportional to the square of the invariant mass of the charged pion
system. We can expand the Dalitz probability distribution in terms of X and Y as

|M|2 = 1 + gY + hY 2 + jX + kX2 + fXY + ... (1.4)

This is the customary definition of the Dalitz parameters g, h, j, k, and f . Higher
order terms are dropped in this expansion because they are considered to be small.
In practice, h is roughly an order of magnitude smaller than g, and k is about an
order of magnitude smaller than the h. A theoretical calculation of these parameters
is extremely difficult, as strong interactions are involved. However, it is possible to
derive relations between the cross-sections for different decay modes using Chiral
Perturbation Theory.

1.2 Isospin Symmetries

The π+π−π0 final state, as any pion state, can be decomposed into a superposition
of states with definite total isospin I. Since the pion is an isospin triplet, the total
isospin of the final 3π state can have a value between 0 and 3, and it is possible to
construct properly symmetrized final states with definite isospin [4]. The result of
this is that the Dalitz parameters for the three-pion decay amplitudes

K+ → π+π+π−

K+ → π+π0π0

KL → π+π−π0

KL → π0π0π0

(1.5)

can be related [5] [6]. In particular, it is possible to relate the Dalitz parameters for
KL → π+π−π0 and KL → π0π0π0 decays. If we describe the Dalitz distribution for
KL → 3π decays by an equation of the form

|M|2 = 1 + aY + bY 2 + cX2, (1.6)

where parameters for odd powers of X, which are CP violating, have been ne-
glected. If some assumptions are made regarding certain final state strong interac-
tion phases [5], then the quantity R, defined in terms of the parameters in Equa-
tion 1.6 by

R ≡ b + 3c− a2

4cos2β
, (1.7)
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is the same for both decay modes. Here a, b, and c are generic coefficients for
each term in the X , Y variable expansion of the Dalitz function, and β is a final
state strong interaction phase. In the case of the π+π−π0 final state, Equation 1.7
becomes

R+−0 = h + 3k − g2

4cos2β
. (1.8)

Since the form of the Dalitz function for the KL → π0π0π0 decay is

|M|2 = 1 + h000

(
Y 2 +

1

3
X2

)
, (1.9)

for these decays Equation 1.7 takes the form

R000 = 2h000. (1.10)

Isospin symmetry then tells us that R+−0 = R000, or equivalently

h + 3k − g2

4cos2β
= 2h000. (1.11)

Previous attempts at studying this relation [5] have assumed the strong interaction
phase β to be zero, and the experimental values available at the time had confirmed
this, within experimental error [5].

There is more to the strong interaction phases than the simple expression in
Equation 1.7. Chiral Perturbation Theory has considered these decays, and some
predictions have been made regarding the relationships between different decay
modes. In particular, radiative effects play an important role here. It is not clear to
us if the predicted quantities can be used to derive a prediction for cos2β . This is
ultimately something for the theorists to study. The work by D’Ambrosio et al. [6]
points out that experimental results are needed if we are to compare the K → 3π
strong phases predicted by Chiral Perturbation Theory with measured quantities.

1.2.1 Radiative contributions

Since we have a very clean π+π−π0 sample, we decided to measure the relative
branching ratio

Br(KL → π+π−π0γ ) =
Γ(π+π−π0γ )

Γ(π+π−π0 )
. (1.12)

This is an interesting measurement in itself, as it had never been experimentally
observed. Using Chiral Perturbation Theory, higher order corrections to the QED
contributions to this decay have been predicted [7]. Our measurement agrees quite
well with the predicted values.
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Corrections due to photon emission by the charged particles plays an important
role in the measurement of the Dalitz parameters as well. This has been treated
extensively in the literature [5]. The emission of a photon changes the available
energy that the charged pions carry, thus changing their momentum distribution.
This affects the Dalitz distribution, in particular the Y variable, which is propor-
tional to the charged invariant mass of the π+π− system. Our study of the radiative
cross-section has made it possible to understand the radiative contributions in great
detail, and to incorporate them in the Monte Carlo simulation. For this reason, we
do not need to make a theory-based correction to our measured values.

1.3 Previous Measurements

Many experiments have tried to measure the Dalitz parameters, with varying degrees
of success. As previously mentioned, the first experiment, by Lues et al. [3] used
only 77 events, and could only measure the relative branching ratio of π+π−π0 events
to all KL decays. Twenty of these experiments did not have enough data to do a
full Dalitz plot fit, preventing their results from being used for averages (PDG-
2000 [8], page 519). The four measurements used in the PDG-2000 average are
the ones by Y. Cho et al. [9], R. Messner et al. [10], K.J. Peach et al. [11], and
Angelopoulos et al. [12] (CPLEAR collaboration). It is important to point out that
none of these experiments, except CPLEAR, were able to reconstruct the π0 in the
decay. Kinematic constraints where used instead. Reconstructing the π0 allows us
to eliminate a great deal of background and to better constrain the kinematics.

The result with the most statistics is the one by Angelopoulos et al., from the
CPLEAR collaboration, with 500K events. Our final sample has 1.6 million events.
However, a better measurement is contingent on the understanding our detector
acceptance in great detail.

1.4 Motivation for this Experiment

The measurement of the Dalitz parameters allows us to probe the underlying re-
lationships between various kaon decay modes into three pions. The KTeV de-
tector is a very good tool for the study of kaon decays, and it has collected the
largest sample of KL → π+π−π0 decays to date. It is natural to use this sample
to measure the π+π−π0 Dalitz parameters. Additionally, KTeV can also measure
the KL → π0π0π0 decay mode. These two results could provide more information
for the theoretical study of kaon physics [6]. Finally, the study of this sample has
made it possible to measure the π+π−π0γ radiative form factors and branching ra-
tio, which had not been observed previously. The understanding of this effect feeds
back into the Dalitz measurement itself, resulting in a very interesting interplay of
measurements.
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1.5 Outline

In this thesis, we will first give a detailed description of the KTeV detector. In par-
ticular, we will concentrate on the two detector components most important to us:
the charged tracking system, which tracks charged particles through the detector,
and the Cesium-Iodide calorimeter, which measures the energy deposited by photons
and other particles. We will then briefly describe data collection and handling. Sam-
ple selection will be discussed next, followed by the analysis cuts applied. A more
detailed description of specific topics follows. We discuss the “Minimum Ionizing
Particle” (MIP) energy cut, applied to charged pion clusters to reduce the proba-
bility of big hadronic showers in the calorimeter. In π+π−π0 events it is possible to
impose mass constraints to improve the reconstruction of the event. We will discuss
how these are applied and the resulting improvement in resolution. We will also de-
scribe the measurement of the radiative cross-section of the KL → π+π−π0γ decay,
and how this feeds back into the Dalitz analysis itself. The Dalitz parameter fitting
comes next, followed by a discussion of the systematic uncertainties. Finally, we
will draw conclusions from our measurement.

Hope you enjoy it!



CHAPTER 2
THE KTEV APPARATUS

The KTeV beamline and detector are formed by many complex systems. In this
chapter we will describe these systems in some detail, concentrating on those systems
that play an important role in our measurement.

2.1 The Beamline

The KTeV experiment utilizes a well defined and clean kaon beam. A lot of work
went into designing the beamline to accomplish this [13, 14]. An 800 GeV proton
beam is extracted from the Tevatron and steered to the KTeV target station. The
Tevatron operates in one-minute cycles. It takes about 40 seconds to inject and
accelerate protons in the main ring, followed by a 20 second long extraction of these
high-energy protons, customarily referred to as the “spill”. The spill is formed by
“buckets” of protons, which are about 18.9 ns apart, and are less than 1 ns wide.
This results in bursts of protons with a frequency of about 53 MHz.

The KTeV target is a narrow rod of Beryllium-Oxide, 3 mm wide and 30 cm
in length (which is about 1.1 interaction lengths). The RMS size of the proton
illumination on the target is about 250 µm in both the horizontal and vertical
dimensions. The beam positioning is kept steady throughout the run using an
Autotune program [15]. The proton beam and target are tilted at a downward angle
of 4.8 mrad, relative to the downstream direction defined by the collimation system
and the KTeV detector. This is done to increase the ratio of kaons to neutrons in
the resulting beam.

All charged particles, including all residual protons from the beam, are swept
away by magnets and dumped into copper and steel blocks. Special care is needed
to sweep away muons, since some are negatively charged and bend in the opposite
direction compared to protons. For this purpose, additional iron blocks were used,
effectively preventing these muons from reaching the KTeV detector.

After sweeping away charged particles, the beam contains mostly photons and
neutrons. The KTeV design requires two beams. These beams are defined by the
collimation system shown in Figure 2.1. The first step is to tune the type and
amount of particles in the beam. For this purpose, two “common absorbers” are
placed in the beam path. The first one consists of 20 inches of Beryllium, which
attenuates neutrons more than kaons due to the difference in their interaction cross-
sections. The second one consists of 3 inches of lead, and converts photons and

6
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absorbs the resulting electromagnetic showers. An additional “moveable absorber”,
an 18 inches long slab of Beryllium, is placed in the regenerator beam, and reduces
the flux considerably. This is done to reduce the amount of hadronic interactions in
the regenerator.

Beam collimation is the next step required to get a well-defined kaon beam. Two
beams are used in the KTeV detector, one as a source of long-lived KL , and the
other as a source for the regenerator, which has the effect of producing the short-lived
KS . It was designed to produce beams with a sharply defined profile and minimum
“halo” from scattered kaons. The “primary collimator”, located 20 m downstream
of the target, serves to reduce the particle flux on the “defining collimator”, which is
situated 85 m downstream of the target and determines the final beam shape. Both
these collimator apertures are square, with a taper to reduce particle scattering off
of the inner surfaces. To further reduce the probability of scattered particles getting
past the collimation system, a “slab collimator” is placed 40 m downstream of the
target to prevent scattered particles from crossing over from one aperture to the
other. A magnet situated after the defining collimator sweeps away any remaining
charged particles. The beams are transported in vacuum starting at about 28 m
downstream of the target.

After the collimation and regeneration system, the beams consist mostly of
KL and neutrons. The vacuum beam kaon-to-neutron ratio is about 0.8, and the
regenerator ratio is about 1.3. At high energy, a significant KS component survives
in the regenerator beam.

2.2 The Regenerator

The regenerator is the means by which KS are produced in the KTeV detector.
Although these do not contribute significantly to three pion final states, we will
give a brief description of it because we will mention it in the discussion of possible
background sources.

The K0 and K0 states have different quark content 1, so they interact differently
with matter. As a result of this, an initial KL state, which is a precise mixture
of K0 and K0 , will be changed in the interaction with matter, acquiring a certain
KS component. This process is called “regeneration”, and it is the means by which
the KTeV experiment obtains KS . If the kaon undergoes only elastic interactions
with the material, it will emerge in a coherent state of the form KL + ρ KS , where
ρ is a well defined regeneration parameter. Since the lifetime of the KS component
is three orders of magnitude smaller than the one for KL , most of these states will
decay as if they were a KS state, with some interference due to the fact that it is a
coherent state.

1see Appendix A
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Figure 2.1: KTeV beam collimation system diagram.

The KTeV regenerator is made of blocks of plastic scintillator, with photomulti-
plier tubes attached to them. Figure 2.2 shows the KTeV detector, the regenerator
being at the beginning on the decay region, right after the mask-anti. Most of the
time, the kaon undergoes inelastic interactions on its way through the regenerator,
and the emerging state is nearly pure KS rather than the coherent state described
above. Moreover, the outgoing kaon is likely to have a big transverse momentum.
The photomultiplier tubes attached to the scintillators allow us to tag these events.

As already mentioned, only KL contributes significantly to the π+π−π0 decay 2.
For this reason, we will only consider events coming from the vacuum beam in the
measurement of the Dalitz parameters. It is important that no kaons from the
regenerator cross over and ”look” like events coming from the vacuum beam. The
regenerator veto helps in eliminating these events.

It is also important to mention that the regenerator alternates its position for
each spill, averaging out any acceptance biases due to the asymmetries.

2see Appendix A
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2.3 The Drift Chambers

KTeV uses a set of four drift chambers for tracking charged particles. Two of these
are upstream of the analysis magnet, while the other two are downstream, allowing
for the measurement of the bend angle of charged particles as they pass through the
magnet. Each of the chambers has two vertical and two horizontal planes of sense
wires to measure the position of a passing charged particle. Surrounding the sense
wires we have a set of field wires that provide the electric field required to attract
the charged products left by the passing track onto the sense wire. Figure 2.3 shows
the configuration of any one of the views of the drift chambers. There are two
important reasons for using two planes of wires. Most particle tracks leave a single
signal in each of these planes, i.e. produce “one hit” in each plane. If we had only
one plane of wires, it would not be possible to determine which side of the wire
the particle went through. Additionally, since we measure the time it takes for the
ionized particles to reach the sense wires, we can select good hits from accidental
hits by measuring the sum of drift distances to the wires, which should be the cell
spacing, 6.35 cm. In the cases where a hit is missing, the ambiguity regarding which
side of the wire a hit came from has to be resolved using information from the other
drift chambers.

The drift chambers were operated with a 50%-50% mixture of argon and ethane,
bubbled through isopropyl alcohol. The drift voltages were set to -2450 V or -2500 V,
determined by a compromise between high efficiency and high current draw. Under
these conditions, the drift speed is nearly constant over most of the drift cell and is
about 50 µm/ns. The electrical pulse on the sense wire is amplified in two stages and
discriminated, and the drift time is measured by a multi-hit TDC with a precision
of 0.5 ns.

The calibration of the drift chamber system involves various steps. First is the
calibration of the position resolution of a track in a given cell. This is done in two
steps

• Shift each sense wire timing to a common T0 reference time, add all time
distributions,

• Calculate the distance vs. drift-time relation by integration of the time distri-
bution.

The second step assumes a constant illumination across the cell, which is a very good
approximation. This process is iterated to compensate for inefficiency differences at
different distances from the sense wire. The resulting position resolution is about
100 µm. This resolution is derived from the “Sum of Distances” (SOD) distribution
for tracks. A track passing through the drift chamber leaves signals in two neigh-
boring cells, as shown in Figure 2.3. If we calculate the sum of the distances to the
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Field wire
Sense wire

Figure 2.3: Drift chamber wire configuration. Shown here are the sense and field
wires in one of the views of a drift chamber. There is one vertical and one horizontal
view for each one of the chambers. Notice the design has no redundancy built in.

sense wires, we should get exactly half the cell separation3. The sense wire position
resolution is

√
2 times smaller than this because the width of the SOD distribution

is the resolution of the sum of two wire distances 4.
After all the data has been collected, we proceeded to the calibration of the

relative and absolute positions of the drift chamber system. The Z positions come
from survey measurements, as they cannot be determined from data. These are
good to within a few millimeters. For all other positions we use muon runs with no
magnetic field in the spectrometer magnet. The process involves various steps

• Fix the X, Y positions and rotations of DC1 and DC4 to the most recent
values available (surveys or previous runs), and determine the X,Y positions
and rotations of DC2 and DC3

3The X view of upstream chambers have wider SOD distributions because tracks are bent in
the magnet and have a bigger incident angles.

4For tracks very close to one of the sense wires, the hit timing can be delayed further, resulting
in worse resolution than the average resolution given by the total SOD distribution.
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• Calculate a possible residual corkscrew rotation from an inaccurate value for
the rotation of DC4.

This results in a positioning accuracy of about 20 µm for X and Y , and rotations
good within about 50 µrad.

2.4 Analysis Magnet

The analysis magnet, together with the drift chambers, forms the charged particle
spectrometer. It is operated at a current of about 1600 A, which imparts a total
horizontal momentum kick of about 0.4 GeV/c to charged particles passing through

it 5. The magnet’s field was mapped using a “zip track” system, and was found to
be uniform to better than 0.25% over most of the region of interest, as expected
from the design. Corrections to track momentum measured by the spectrometer
are applied based on this field map. Additionally there is a “fringe field” produced
by the magnet, which extends past DC2 and DC3 (the drift chambers upstream
and downstream of the magnet, respectively). This produces a small track bending,
which is corrected using measured data.

The “kick” provided by the spectrometer magnet is calibrated using KL →
π+π− events, since the invariant mass of these events is the kaon mass. An extra
position correction is applied, based on measurements of the field variations across
the kick plane of the magnet.

2.5 Calorimeter

The calorimeter constitutes one of the most important pieces of the KTeV detector,
both for it’s quality and cost.

Pure “Cesium-Iodide” (CsI) has two scintillation components, one “fast” (decay
time ∼25 ns, peak wavelength ∼305 nm) and one “slow” (decay time ∼1 µ s,
peak wavelength ∼480 nm). The fast component has sufficient light output that, at
KTeV energies, the resolution term from photostatistics is acceptably small. Studies
of radiation damage in small CsI pieces suggest that it could be made sufficiently
radiation hard, although this had not been shown for large pieces. However, CsI also
has some properties which make handling inconvenient: it is fairly soft, which makes
polishing difficult and makes the crystals susceptible to scratches and bending, and
it is somewhat hygroscopic, requiring a dry environment for storage and handling.

There are a total of 3100 pure CsI blocks in two cross-section sizes: 2.5 cm×2.5 cm
in the central region (where position resolution and the ability to distinguish two

5The “momentum kick” is defined as the total momentum change of a particle as it traverse
the entire magnetic field region of the spectrometer. The change in momentum is independent of
the particle’s mass and momentum.
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close photons is more important) and 5 cm×5 cm in the outer region. Figure 2.4
shows a representation of the CsI calorimeter face. All of the blocks are 50 cm long
(27 radiation lengths) so that the electromagnetic shower from a high-energy photon
or electron is almost fully contained, minimizing the resolution term from fluctua-
tions in the amount of energy lost out the back of the CsI array. Two 15 cm×15 cm
square beam holes (supported by square carbon-fiber tubes) allow passage of the
neutral beams through the calorimeter.

Each crystal is wrapped in 13 µm thick mylar, part of which is aluminized. By
choosing where we put the reflective mylar, we can tune the light collection to be
uniform to within 5%, as determined using an automated test setup which measured
the light output of the crystals, as produced by a Cs-137 source moved to ten places
along their length. Finally, a plastic flange with magnetic shielding material is glued
to the end of the crystal. This flange will hold the photomultiplier tube that will
collect the scintillation light.

Cesium-Iodide is much more resistant to radiation damage as compared to the
lead glass used in previous experiments, such as E731. Radiation damage tests were
conducted on these crystals, and it was determined that the uniformity along the
crystal is affected by the radiation damage. This behavior varied considerably from
crystal to crystal.

The calorimeter was assembled in a sealed metal enclosure,“the blockhouse,” in
the KTeV hall. Size considerations were taken into account when assigning crystal
positions in the calorimeter, so that sizes and surfaces matched as well as possible.
The blockhouse has its own dehumidifying and air conditioning systems to protect
the crystals and to cool the electronics. Vertical “ribs”, just downstream of the crys-
tals, support the readout electronics and convey power, digital and analog signals,
and optical fibers. The front of the blockhouse has a “window” of several layers of
aluminized mylar to allow particles to enter through minimal material while keeping
the interior dark.

The scintillation light from each CsI block is collected by a photomultiplier tube
(PMT) coupled to the crystal with a soft silicone “cookie” and a disk of Schott UG-
11 filter glass, which blocks a significant fraction of the slow-component scintillation
light. The PMTs were custom-designed for KTeV to meet the stringent specification
on linearity at the rather low gain required by KTeV. For many crystals, we used a
cookie with an embedded black annular “mask” to reduce the amount of light seen
by the PMT, so that we can operate the PMT at a higher gain where the linearity
is better.

The CsI signal is read out by a novel “digital photomultiplier tube” (DPMT)
device [16], in which the PMT anode is connected by a very short cable to a circuit
which digitizes the signal, buffers the digitized value, and transmits it on demand.
The heart of the device is an ASIC (Application Specific Integrated Circuit) de-
veloped at Fermilab, the QIE (for “charge integrator and encoder”), which divides
the input signal into several ranges (with 1/2, 1/4, 1/8, . . . of the input signal),



14

1.9 m

Figure 2.4: Cesium-Iodide calorimeter crystal arrangement. Notice the small crys-
tals in the inner portion of the calorimeter, and the big outer ones, and also the
beamholes, which have been left open to prevent hadronic interactions with the
leftover beam.

accumulates PMT charge on capacitors over a given time interval (“slice”), selects
the range for which the voltage on the capacitors lie within a certain window, and
outputs that voltage to be digitized by a separate flash ADC chip. The range se-
lected is indicated by a binary “exponent” code, which is recorded with the digital
“mantissa” from the flash ADC. Each range uses four capacitors in a rotating se-
quence, so that the device continuously produces outputs for each time slice. A
second ASIC, the DBC (for “driver, buffer, clock”), contains a FIFO to store the
digitized information from the QIE and flash ADC on each clock cycle, and transfers
the data for several consecutive time slices to a “pipeline” module when an event is
accepted by the trigger. Thus, this device provides a wide dynamic range with very
low noise (pedestal width ∼ 0.5 MeV) and with pulse shape information.

The multitude of DPMT ranges and capacitors makes calibration rather complex.
Cross-calibration is done using a laser calibration system which distributes shaped
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pulses of UV light (produced in a dye by the primary laser pulse) to each crystal
along a quartz fiber connected to a hole in the flange; the light intensity is scanned
up and down over the full dynamic range, and referenced to PiN photodiodes with
excellent intrinsic linearity. This system is also useful for monitoring short-term
drifts in the PMT gains during normal running.

The channel gains are then calibrated using electrons, by matching the energy
measured by the calorimeter to the momentum measured by the spectrometer, in
an iterative procedure. Figure 2.5 shows the ratio of the calorimeter energy to the
track momentum (“E/p”) for these electrons after all calorimeter corrections. The
width of the distribution is the result of both the calorimeter and the momentum
resolution. Figure 2.6 shows the calorimeter resolution after subtracting the track
momentum resolution from the width of the E/p distribution. The track momentum
resolution is estimated from the mismatch of tracks at the magnet’s kick plane (which
is a measure of the error in the determination of the difference of the slopes of charged
tracks). Figure 2.7 shows the π0 mass distribution from KL → π+π−π0 events. The
mass of a π0 , calculated from the positions and energies of the photons reconstructed
in the calorimeter, is

m(γγ) ≈ r/z
√

E1E2 (2.1)

where r is the distance between the photons in the calorimeter, z is the distance
from the vertex to the calorimeter, and Ei are the energies of the photons. Since we
have

σr/r ≈
√

2× 1mm/50cm ≈ 0.3%,
σz/z ≈ 10cm/50m ≈ 0.2%,
σE/E ≈ 0.6%,

(2.2)

the mπ0 relative resolution of ≈ 0.7% matches well with this estimate.

2.6 Trigger and Veto counters

The trigger hodoscope is the primary component in the charge-mode trigger. It
consists of two planes of plastic scintillator, called “V0” and “V1”, each about
2 m square in size, and divided into individual paddles, as shown in Figure 2.8.
The paddles are placed such that the gaps between counters (known as “cracks”)
are in different locations for the two successive planes. This is to prevent a given
particle from passing through cracks in both planes (except at discrete locations
along the horizontal cracks). The scintillation light is collected by photomultiplier
tubes attached to the top and bottom of the scintillator paddles. The beam holes,
each 14 cm square in size, were added to the design after it was determined that a
significant fraction of the radiation dose in the E731 lead glass was due to hadron
interactions in the E731 trigger hodoscopes, which had no beam holes. The output
pulses from the photomultiplier tubes are fast enough to allow single-bucket timing.

There are several types of veto counters collectively referred to as “photon ve-
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Figure 2.5: Energy/momentum distribution for electrons in K → πeν decays. The
peak at E/p = 1 indicates that electrons deposit all of their energy in the calorime-
ter. The width of the distribution is due to tracking and calorimeter resolution
effects.
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Figure 2.6: Calorimeter energy resolution as a function of track momentum, for
electrons. The momentum resolution, which is determined by how well upstream
and downstream tracks match at the magnet, has been subtracted in quadrature.

toes”. These include the “Ring Counters” (installed along the vacuum tank), “Spec-
trometer Antis” (at the outer edges of the drift chambers and the calorimeter), and
the “Back Anti” (BA) (downstream of the beam holes in the calorimeter, just in
front of the muon filter steel). All of these counters are made of alternating layers of
lead and scintillator and are divided into segments with individual photomultiplier
tubes. The BA is also segmented longitudinally to help distinguish between elec-
tromagnetic and hadronic showers. For each photon veto counter, a signal above a
certain threshold generates a digital pulse which is sent to the trigger system and
may be used in the Level 1 trigger decision.

The Collar Anti is also intended to detect photons, but has a different construc-
tion and also has the important task of defining the inner aperture for photons
landing near the beam holes of the calorimeter. The CA consists of two identical
detectors around the two beam holes of the calorimeter. Each one is 1.5 cm wide to
occlude the inner part of the crystals immediately surrounding the beam holes, as
shown in Figure 2.9.
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Figure 2.7: Mass of γγ pair in KL → π+π−π0 data.

Behind the calorimeter, we have some additional hadron/muon vetoes. In the
downstream direction, we have a lead wall, 15 cm deep, followed by the Hadron-Anti,
which detects hadronic shower products. Then comes 1 m worth of steel, followed
by the Back-Anti, which can be used to veto photons. Finally, we have a set of
two muon counters, MU2 and MU3, each preceded by a steel wall, which are used
to veto muons. In our measurement, these can come from pion decays in-flight, or
from shower subproducts.
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V0

V1

Figure 2.8: Trigger hodoscope banks used in the charge-mode trigger. The banks
are approximately 2 m×2 m in size. Note that the paddles are placed such that a
particle cannot go through gaps in both banks.
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Figure 2.9: Collar Anti geometry.

2.7 The Trigger System

Most of the events resulting from kaons coming from the target are not useful to us.
The “Trigger” system is the means by which we select those events which we consider
to be “good”, and read all detection system outputs and write the information to
tape. The KTeV trigger system is described in detail in Chapter 3 of Ref. [17]. It
consists of three “levels” with different strategies and deadtime implications. Level 1
uses fast synchronous signals from various detector elements and simple logic to
evaluate the state of the detector for every RF bucket. Level 2 consists of a set of
specialized electronic processors which evaluate the number and pattern of signals
on individual drift chamber wires and calorimeter channels. For events which pass
the Level 2 trigger, the detector information is transferred to computer memory, and
a Level 3 trigger process, running in parallel on 24 CPUs, reconstructs the event
and applies some loose kinematic cuts to select candidate events.

2.7.1 Level 1 Trigger

Several dozen boolean “source” signals are available for the Level 1 trigger decision.
For example, one source indicates that at least two counters in the V0 plane of
the trigger hodoscope were hit, while another indicates that the total energy de-
posit in the calorimeter (based on an analog sum of phototube dynode outputs) is
above a certain threshold. These sources are formed and combined using mostly
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commercial electronics and simple logic. To keep the trigger rate at a manage-
able level, triggers may be inhibited by fast veto signals from the Regenerator, the
Mask-Anti, the photon vetoes, and the muon veto hodoscope. An “accept” decision
by the Level 1 trigger initiates the digitization of various detector signals (ADCs,
TDCs, and latches) and buffers the continuously-digitized calorimeter information
in FIFOs. The raw Level 1 trigger rate is about 60 kHz under normal running
conditions. In Chapter 4 we will give the details of the trigger requirements used in
π+π−π0 events.

2.7.2 Level 2 Trigger

Only the Y views of the drift chambers are used in the Level 2 trigger decision. The
hit-counting system, consisting of “Banana” and “Kumquat” modules, takes signals
from each wire and counts the number of pairs of complementary wires (or isolated
wires) in each chamber which were hit within an appropriate time interval. The
hit-counting system takes around 800 ns to provide a result.

An additional Level 2 processor called the “Y Track Finder” (YTF) was added
to evaluate whether the drift chamber hits found by the hit-counting system are
consistent with two straight tracks. It is designed to be used for π+π−, and so it
looks for one upward-going track and one downward-going track, with an overlap
region in the central region of the drift chamber system which satisfies both the
“up” and “down” requirements. It was built from commercial programmable-logic
and memory-lookup modules. It uses coarse-grained outputs from the hit-counting
system (each one an OR of 16 contiguous wires) as its inputs, and generally returns
a decision a few hundred nanoseconds after the hit-counting system.

If an event passes the Level 2 trigger, then digitization is allowed to finish and
the front-end modules are read out, a process which takes around 18 µs. If the event
fails, then the front-end modules are cleared and the trigger system is re-enabled
after a few hundred nanoseconds. Front-end readout and clearing together cause
a fractional deadtime of about 35% under normal running conditions. The total
Level 2 trigger rate is about 10 kHz.

2.7.3 Level 1 and Level 2 Trigger Definitions

Both the Level 1 and Level 2 control logic use programmable memory lookup units
(MLUs) to make the trigger decision based on the inputs. A text configuration
file is used to define symbols for logical combinations of low-level trigger inputs
and to specify the trigger requirements for 16 trigger types; the file is parsed to
generate the necessary memory maps to be loaded into the MLUs. The trigger is
designed to be almost 100% efficient for the ππ modes, to minimize possible biases
on the measurement of direct CP violation. The same trigger used in π+π− accepts
π+π−π0 events. For example, we define loose trigger-hodoscope, hit-counting and
YTF trigger requirements to be insensitive to a single crack or inefficiency.
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Additionally, there are special triggers with looser requirements to permit study
of inefficiencies in the nominal triggers. There are also extra triggers to collect 3π0

decays for detector studies and to select candidates for several rare kaon and hyperon
decay modes. Among other things, this makes it possible to measure the Dalitz
parameters for KL → π0π0π0 decays. Finally, an “accidental” trigger is formed,
using (prescaled) scintillation counters near the kaon production target, to randomly
record the underlying activity in the KTeV detector with the same instantaneous-
intensity distribution as the physics data.

In addition to the beam-related triggers, there is a separate set of hard-wired
“calibration” trigger, used mostly to monitor the response of the calorimeter to
light from the laser calibration system and to cosmic-ray muons, and to measure
“pedestals” (baseline digitized values reported by the ADCs and DPMTs when no
energy has been deposited).

2.7.4 Level 3 Trigger

The detector data is read out into VME memory modules with sufficient capacity to
hold the data from an entire 20-second spill. Therefore, the Level 3 computers have a
whole minute to process the data without introducing any deadtime. A minimal set
of kinematic and particle-identification cuts are applied to select π+π−π0 candidates,
and the cuts are loose since event reconstruction has to rely on preliminary detector
calibrations. The track and vertex candidates are reconstructed first, and the ap-
proximate charged invariant mass, mπ+π− is calculated for each vertex candidate.
The charged invariant mass is required to verify 0.2 GeV< mπ+π− <0.4 GeV. If
this is true, the calorimeter information is unpacked and clusters are found and
matched to the tracks. If the tracks have matching clusters, the quantity E/p is
calculated for each track and required to be less than 0.9. Additionally, a third
cluster with E > 1 GeV is required, together with a minimum separation between
the tracks and photon clusters of 0.2 m. Lastly, an effective prescale of 7 is imple-
mented by requiring that π+π−π0 events pass both TRIGGER 1 and TRIGGER 2.
TRIGGER 2 is the same as TRIGGER 1 with the additional requirement of HCC
readout, and it is prescaled by 7. If all these conditions are met, the event is tagged
as a π+π−π0 candidate and written to tape.



CHAPTER 3
THE KTEV 1997 RUN

The KTeV experiment’s 1997 run collected data from January until September of
1997. The detector can function in two different configurations: experiment E832,
designed to measure Re(ε′/ε), and experiment E799, which studies a variety of rare
kaon, π0 , and hyperon decays. The main difference between E832 and E799 is that,
in the latter, the Mask-Anti and regenerator are taken away from the beam, and
transition radiation detectors are placed in the beam path, between the fourth drift
chamber and the calorimeter. Our data comes from the E832 collected set, which
run between April and July of 1997.

Data was collected around the clock, with shifts of three people handling tasks
such as starting new runs, monitoring various detector performance indicators, re-
setting the system when needed, and calling specific experts if serious problems
occurred.

3.1 Data Taking

KTeV is a complex experiment, and problems are bound to occur. The main problem
we had involved the calorimeter readout electronics, although we also had other
system problems as well. Overall, 15-20% of otherwise good beam time was lost due
to beamline and detector problems. We will mention the most important problems
we encountered.

3.1.1 Calorimeter Readout

The KTeV CsI calorimeter has about 3100 photomultiplier tube channels in its
readout. The photomultipier tube signals are collected by DPMT boards. The
QIEs occasionally indicated an incorrect readout range. It was thought that this
was related to a bad batch of chips, but it was later demonstrated to be intrinsic
to the particular chip fabrication process used. The failure rate was about one per
day.

Any serious DPMT failure was generally noticed within a few minutes by the
monitoring software and triggered an alarm. We generally replaced the DPMT
immediately, which involved steering away most of the primary proton beam and
putting in the beam stop to allow people to go into the calorimeter blockhouse.
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Thankfully, the actual replacement was simple, causing a downtime of less than an
hour.

3.1.2 Drift Chamber System

The drift chambers had a number of problems. After they were installed in the
KTeV Hall, it was found that the sense wires were able to pick up electronic noise,
which after amplification, was large enough to be recorded as fake hits. In particular,
there was substantial noise during the asynchronous readout of the digitized TDC
information, when the detector should have been ready to record another event.
To avoid this problem a number of modifications were made. Extra grounding was
added to the first amplification stage (at the chambers themselves). The gain of the
second-stage analog amplifiers was reduced as well. These modifications generally
reduced the noise pickup level to below the discriminator threshold.

There were a number of instances in which excessive current was drawn from the
high-voltage supplies. A few such cases turned out to be due to discharges from wire
stubs or other metal objects. Cleaning the interiors of the chambers seemed to help
at one point. When high-intensity beam was delivered for the first time, there was a
concern about how much current was being drawn, and the chamber voltages were
lowered. Even so, there were several instances of unexplained current draw during
data collection which were cured by cycling the high voltage. This current draw
was generally at a low level and did not seem to adversely affect the drift chamber
efficiencies.

On several occasions, one of the drift chamber electronic subsystems would begin
to “oscillate”, producing a continuous stream of fake hits on many of its wires. This
happened in sets of sixteen channels, associated with the fact that there is one
amplification/discrimination card every sixteen channels. Usually, all channels in a
card would start to oscillate, as they are coupled by the power supply rails, and peak-
to-peak oscillations in one amplifier can easily trigger oscillations in neighboring
devices. The power to the amplification/discrimination system had to be cycled
to stop these oscillations. The most likely source of the instability of the system
was the high gain of the second amplification stage: there was no filtering on the
output of this stage to the discriminator (as was later discovered). This, together
with the undampened feedback loop of the design, can cause an oscillation of the
amplification stage at its bandwidth limit frequency of 3 MHz. This was observed
afterwards, and we will discuss it in Section 3.1.4.

An important problem during the 1997 running was the high level of hit pairs
whose “sum-of-distances” (SOD) to the hit wires was bigger than expected. A “good
SOD” is a hit pair whose distances to the sense wires adds up to 6.35 mm, which is
half the cell size. “Low SODs” are expected because delta-rays and other charged
particles can produce extra hits, which arrive to the sense wire before the actual
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hit. Figure 3.1 shows the SOD plot for the 1997 run, and compares it with the one
for the E773 [18] experiment, which used the same drift chambers.

Save for resolution effects, a properly functioning chamber should not have an
excessive number of high SODs present in the SOD distributions. This can happen if
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Figure 3.1: “Sum of Distances” distribution for the first portion of the KTeV run,
compared to the one from E773 [18], which used the same drift chambers. Notice
how much higher the high-SOD tail is.
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the gain of the chamber is not high enough. This gain can be raised by increasing the
accelerating voltage, but we are constrained by current draw. It can also be raised
with a higher analog gain, but then we are constrained by noise pickup and instability
of the system. Another possible reason for high SODs is radiation damage: a sense
wire can be damaged at various points, making it less efficient. This was clearly
indicated by the fact that the high SOD probability was much higher where the
radiation was higher: in the beam region of DC1. Moreover, the problem got worse
as the run progressed, indicating that all wires were being affected more and more
by the radiation deterioration. It is not clear what mechanism produced the wire
deterioration. Photomicrographs of the wires were taken after the run. It was seen
that some wires had developed small silicon deposits on them, which might be the
cause of the inefficiency, and might explain why the performance got worse as time
progressed.

The biggest changes in the high SOD probability were seen when the high volt-
ages were lowered from 2500 V to 2450 V. The remaining time dependence showed
some correlation with atmospheric pressure. These two factors are directly related
to drift chamber gain. There was also some dependence on beam intensity, though
the loss probability changed by only ∼30% of itself between nominal intensity and
very low intensity, so the bulk of the effect is independent of intensity. The intensity
dependence is greatest in the beam regions of the drift chambers.

It was established early on that most instances of the high-SOD effect occur
when a particle passes close to a wire (within a few hundred microns): it is the wire
closest to the track that mismeasures the drift time. This suggested a mechanism
which we now believe to be the correct explanation for the high-SOD effect: the
total gain of the chamber gas and electronics was too low for the system to trigger
on single electron hits. When a particle passes far from a wire, several drift electrons
reach the wire at about the same time, giving a peaked, short pulse. However, when
a particle passes close to a wire, the drift electrons tend to dribble in, giving a broad,
long pulse. The first few drift electrons arrive one at a time, resulting in a broad
pulse. Then two or more may arrive simultaneously and trigger the system. The
end result is a bigger spread in hit times than normally expected.

The probability of mismeasuring a hit distance varies significantly from wire to
wire, presumably due to small gain or threshold variations from channel to channel.
It also varies along the length of a given wire. Intriguingly, many wires have one
or more spots where the high-SOD probability is very high, which we have named
“freckles.” The freckles are highly localized, with sizes of order a few millimeters,
and generally persist throughout the whole 1997 run. This is in line with the carbon
fiber formations observed on the wires after the experiment was over. Usually the
wire also has a significant inefficiency, i.e. a chance that no hit at all will be recorded
at the same spot, supporting the idea that a freckle is a place where the wire has a
very low effective gain.

We used the eπν and π+π−π0 decay channels in the random-accept sample to
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map out the time and position dependance of the high-SOD probability (with sep-
arate maps for the two regenerator positions) and added these effects to the drift
chamber simulation in the Monte Carlo. Figure 3.2 shows the high-SOD probability
and missing-hit probability distributions in data, determined by the random-accept
sample.

3.1.3 Miscellaneous Other Problems

We experienced some additional problems during physics data taking. We will
mention a few of the most relevant issues here.

The digitized information from the various parts of the detector was transmit-
ted to the computer memories along a rather convoluted path. The calorimeter
information was assembled asynchronously by a “Crate-Trigger Interface/Readout
Controller” (CTI/RC) in each crate of pipeline modules, using a custom backplane.
For all other systems, readout within a crate was based on the “FERA” readout
protocol developed by LeCroy for the ADC modules of the same name; it relied on
front-panel cables which tended to be fragile, especially in crates where modules of
different types were in the same readout chain. In all cases, the data from each crate
was transmitted to the computer memories along ribbon cables using the RS-485
protocol, but because total distances of a few hundred feet were involved, it was
necessary to add “repeaters” at several places to retransmit the digital information.
All of these systems were subject to occasional glitches, which generally either froze
the data-acquisition system or else caused errors when events were unpacked, and
required the system to be reset. Monitoring software was developed and improved
over time to alert the people on shift to problems as they occurred.

3.1.4 Drift Chamber Improvements for the 1999 KTeV Run

After the 1997 run had concluded, we decided that we needed to improve the drift
chamber performance for the upcoming 1999 run. This comprised a set of improve-
ments. Firstly, some of the chambers were rewired. This was most important for
those chambers exposed to higher beam intensities, which showed the most damage.
Secondly, the gas supply and alcohol bubbling systems were refurbished. The biggest
change in the drift chamber turned out to be the modification of the electronics.
The hit detection system has three stages. The first stage is signal amplification at
the chamber itself. A signal from a wire gets picked up by a current-sensitive device,
which in turn does some amplification and sends a balanced signal to the second
stage amplifier. The second stage amplifier and discrimination circuit is integrated
in cards, sixteen channels each, which are located in a separate rack. This stage
receives the balanced signal from the first amplifier and amplifies it some more,
putting out a single-ended signal for the discriminator to trigger on. Once discrim-
inated, the signal is fed to a TDC system, which does the timing with a resolution
of 0.5 ns, and sends the result upstairs.
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Figure 3.2: High-SOD and missing-hit probability distributions in Chamber 1
(DC1). Notice the presence of high inefficiency spots in the bottom plot. Their
positions were quite stable throughout the run.
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Our goal was to increase the drift chamber system efficiency. As mentioned
earlier, this can be done by increasing the amplifier gain. This is, however, not
straightforward. Increasing the gain means a higher chance of noise triggering the
system. It also means that the system would be prone to oscillations. There are two
important sources of noise: the digital signal being sent to the TDCs; and the digital
noise picked up by the sense wires themselves during system readout. Increasing
gain alone would lead to oscillations. Looking at drift chamber signals using an
Fe55 source, we determined that the rise time of a signal was, at best, 1-2 ns. So
we added a low-pass filter with a time constant of roughly 1 ns between the second
amplification stage and the discrimination circuit. This made it possible to increase
the gain without system oscillations. To further decrease the chance of oscillations
and picking up noise, we added ferrite cores to all the ribbon cables going from the
discriminators to the TDCs. During the 1999 run, the system experienced a few
instances of oscillation, but for the most part it behaved admirably.

3.2 Data Reduction

KTeV generated a very large amount of data. For E832 alone, over five billion events
were written out to about 3000 DLT tapes. Since each has a nominal capacity
of 10 GB before compression, the total data stream size is about 35 terabytes.
Accessing the data presented a major challenge, since it is not practical to read
through all 3000 tapes multiple times for the various analyses to be performed. The
data was “split” into separate datasets according to the sample tags determined
by the Level 3 processing. All events tagged as π+π−π0 candidates were copied to
126 tapes. During the copy procedure, the calorimeter and HCC information was
“squeezed” into a more compact format, reducing the average event size of an event
by about 40%, without any loss of information. The subsequent selection varied
from sample to sample, each analysis requiring different characteristics.



CHAPTER 4
KL → π+π−π0 SAMPLE SELECTION

We will describe how the KL → π+π−π0 sample is selected from the data: the hard-
ware trigger requirements; the reconstruction; and the event-selection cuts applied
to select the final π+π−π0 sample for the measurement of the Dalitz parameters.

4.1 Hardware Trigger Requirements: Level 1

The Level 1 trigger for π+π−π0 events uses various logical sources to make a decision
and pass the event to Level 2. There are two main trigger sources in the charge
mode trigger in E832: the V0 and V1 trigger hodoscopes and drift chambers 1 and
2, used as hit counting devices. All in all, Level 1 processing takes about 19 ns.

4.1.1 Trigger Hodoscope Banks

The main hardware trigger are the V0 and V1 hodoscope banks previously described
(see Figure 2.8). Two hits in one of the hodoscope planes, and one hit in the other
are required. Additionally, we impose a topological condition: there must be at
least one hit in the “upper” and one in the “lower” portion of the hit counters, and
one of them in the “east” and one in the “west” regions (right and left portions
of the counters, when looking downstream). The upper and lower regions overlap
slightly, and so do the east and west regions. A charged particle hitting the overlap
region would count as belonging to both regions. This trigger is designed to be most
efficient for π+π− events, as they will naturally have this topology given that the
incoming kaon is roughly centered with respect to the hit counters, as it’s position is
inside one of the beam holes. For π+π−π0 , this trigger requirement is not as efficient
given the presence of the π0 , which can carry a substantial amount of momentum.

4.1.2 Drift Chambers as Hit Counters

The probability of a kaon decaying between drift chamber 1 and drift chamber 2 is
rather large. We do not want events like these, as we would not have enough tracking
information to reconstruct the charged pion momenta. To reject these events at
Level 1, avoiding useless Level 2 deadtime, the X and Y views of chambers 1 and
2 are added in hardware to form the equivalent of a hit counter. The “paddles” are
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formed by adding together 16 wires over the two overlapping planes in each view,
i.e. 8 wires from the upstream and 8 wires from the downstream planes in a given
view. This makes each effective “paddle” of width 10.16 cm. Sense wire signals
are “OR”-ed together in hardware by a DC-OR system, and a central controller
counts the number of paddles hit in each chamber plane. This controller produces
two sources per X and Y planes in each chamber, that are used in the Level 1
trigger. Given the relatively long drift times of ∼150 ns, these sources cannot have
the single-bucket resolution that most other Level 1 sources have. It was chosen to
take a 90 ns window for these sources, a little more than half the drift time, as a hit
ought to have a drift time less than half the maximum for one of the two planes in
a given view. Additionally, since a hit can be missed, only three of the four views
are required.

4.1.3 Vetoes

The Charge-mode trigger was vetoed if there was significant energy deposited in the
regenerator, the spectrometer antis, the Cesium-Iodide anti, or the muon hodoscope.

4.2 Level 2 Trigger Requirements

Once the Level 1 trigger is satisfied, the Level 2 trigger analysis is started. Level
2 processing takes roughly 2 µs. The first step is hit counting in the Y views of
the drift chambers. An event was required to have at least two hits in any three
chambers, and at least one hit in the remaining chamber. Additionally, the “Y Track
Finder” was required to find one track in the upper half of the chambers and one
track in the lower half, with a small overlap region slightly bigger than the beam
widths 1. Finally, one of the tracks was allowed to miss a hit in either chambers 1
or 2.

4.3 Level 3 Trigger Requirements

The Level 3 trigger takes the longest time to process, about 2 ms. It required some
loose kinematic constraints on the π+π− invariant mass and the energy-momentum
ratio of each track:

0.2 GeV /c2 < mπ+π− < 0.4GeV /c2, E/p < 0.9. (4.1)

together with an extra cluster in the calorimeter, with E>1 GeV, at least 20 cm
away from the track positions at the calorimeter.

1As with the hodoscope logic, this is optimal for π+π− events, and will eliminate a bigger
fraction of otherwise good π+π−π0 events.
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4.4 Charged Pion Tracking

The offline analysis of the sample begins by finding tracks in the spectrometer. We
first unpack the drift chamber information and convert drift times to distances from
the sense wires. For a given wire, only the earliest hit is considered. Most of the
time, a track leaves one hit per plane. However, there is a probability that a track
would leave no hit, and since there are 32 planes in the tracking system, this becomes
all the more likely. The types of possible “imperfections” are:

• “Delta rays”, which are high energy electrons, knocked off of the gas atoms
by the incident pion. These electrons produce a secondary ionization trail,
resulting in a low SOD;

• The two charged pions pass through the same sense wire cell, leading to a
low-SOD;

• Inefficiencies can produce a missed hit or a delayed hit, leading to a high-SOD.

A “good” SOD is within ±1 mm of the cell size (±1.5 mm in the X views of
chambers 3 and 4, since the bending in the magnet leads to bigger incident angles,
which broadens the SOD distribution). To accommodate for imperfections, various
possible configurations are evaluated. If the number of configurations gets to high,
the worst types of configurations are dropped.

To decide which set of hit configurations best represents our event, we first look
at the Y hits. Since, to first order, there is no magnetic field in the X or Z directions,
the Y view of a track should be straight from the first to the last chamber. Thus,
all Y hits are required to lie on a line. The hits must have, at least, two good SOD
pairs. As for the X direction, there is a looser requirement, since there is bending in
the magnet. In this case, tracks are required to match within 6 mm at the magnet
bending plane (usually referred to as “kick plane”), which is the effective plane at

which tracks bend 2.
Even with all these conditions, there are usually more than one set of candidates

for the X and Y views. Since the drift chambers have only one set of horizontal
and vertical wires, external information is required to pair up hits in the two views
to form tracks. For this purpose we use the clusters in the calorimeter: we require
each possible candidate to extrapolate within 7 cm of a cluster in the calorimeter.

Finally, the possible combinations left are evaluated according to the vertex they
point to. For a given vertex candidate, the two tracks are not allowed to share any
hits.

Once we have determined the best track candidates, we apply second order
corrections to the tracking information: fringe fields from the analysis magnet and

2This is only an abstraction, of course. A fringe field correction is applied to compensate for
the fact that fringe field at drift chambers 2 and 3 will start bending the tracks.
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magnetic field non-uniformities, calculated from the field map variations measured
independently in the magnet.

The final decision is made based on the quality of the vertex found (minimum
“vertex χ2”), and the smallest discrepancy of extrapolated tracks at the kick plane
(minimum “Offmag χ2”). How many missing hits there are also plays a role in this
estimation.

4.5 π0 Reconstruction

The requirements for a π+π−π0 event to pass Level 3 are:

• Satisfy all charged event tracking conditions, as if it were a π+π− event; and

• An additional cluster, with E > 1 GeV, should be present in the calorimeter.

These are very loose requirements for a π+π−π0 event. During offline analysis, the
photon clusters are required to have an energy of at least E > 3 GeV, and the two
photon clusters are required to reconstruct an invariant mass close to the π0 mass,
which in and of itself is a very stringent condition. It is important to point out that
extra low energy clusters are not a cause for vetoing the event. This allows us to
use this sample for the measurement of the radiative cross section, as described in
Appendix D.

4.6 Pion Showers

Charged pions have electromagnetic and hadronic interactions with the Cesium-
Iodide in the calorimeter. Given the momentum spectrum of the pions in our sample,
roughly 10−80GeV , the ionization energy loss per unit length of material, dE/dx, is
approximately constant. This is known as the “Minimum Ionizing Particle” (MIP)
regime. For pions in Cesium-Iodide we have dE/dx|min = 1.243 MeV/(g/cm2)
(PDG2000 [8]). Since the crystals are ∼50 cm in length, the energy deposited by
MIP pions is ECsI ≈ 0.282 GeV. Figure 4.1 shows the energy of track clusters
in the calorimeter, as measured from data. As can be seen here, the peak is at

E
peak
CsI ≈ 0.37 GeV, which is higher than the value quoted above. This is because

the MIP value for dE/dx is the minimum possible. For higher pion momenta, the
energy deposited per unit length of material slowly increases. From the information
available in PDG2000 [8], page 164, Figure 23.3, one can estimate that the value of
dE/dx in the 10-80 GeV/c pion momentum range is roughly 30% higher than the

value at the minimum, which explains the difference 3. Notice also that the peak
in Figure 4.1 has a long tail. These are events where the pion had some hadronic

3The same holds true for muons, so an energy cut could be used to select higher momentum
muons during calibration runs.
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interactions with the Cesium-Iodide. Figure 4.2 shows an event in which one of
the charged pions showered in the calorimeter. Note that the energy it deposited
is a substantial amount of its momentum (E/p ≈ 0.42), whereas the other pion
did not deposit much energy. About 2/3 of incident charged pions will shower in
the calorimeter. This means that, for π+π−π0 , the probability of both pions not
showering is roughly 1/10. Figure 4.3 shows an event in which neither pion deposited
much energy in the calorimeter.

We have chosen to implement a cut to reject events with “big” pion showers.
We do this by requiring that all charged pions be such that the energy deposited in
the calorimeter is less than a certain threshold:

ECsI, tracks < 1GeV , (4.2)

where the threshold value was chosen from the cluster energy distribution in Fig-
ure 4.1. This “MIP sample”, as we will call it, was originally intended for the
measurement of the radiative branching ratio

Br =
Γ(KL → π+π−π0γ )

Γ(KL → π+π−π0 )
, (4.3)

where we need very small track clusters in order to reconstruct the radiative photon
accurately. However, we decided that it would be best to use this sample for the
Dalitz measurement as well, to reduce possible biases from pion showers. These
showers tend to be big in size, they can easily have a 20-30 cm radius. They also
tend to have quite irregular shapes. A great deal of effort has been put in simulating
this accurately in the Monte Carlo, but it is not clear how well the simulation
reproduces the shower details. Additionally, photon clusters can be contaminated
by shower secondaries. Although it has been shown that event loss due to this
effect is negligible at photon-track separations bigger than about 30 cm, the cluster
energies could be modified, which would affect our reconstruction.

4.7 Analysis Cuts

We will now discuss the main analysis cuts implemented in this analysis.

4.7.1 Trigger Verification

We verify that the reconstructed tracks obey the correct hodoscope “up-down” and
“east-west” logics that we have already described. The data has a small tail that
does not verify this logic. This could be due to accidental activity in the trigger
hodoscopes. For this reason we force the up-down and east-west requirements in
the offline analysis by extrapolating tracks to the hodoscopes and verifying that the
logic is satisfied. We also check that MU3, the muon counter downstream of MU2,
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Figure 4.1: Energy distribution of calorimeter clusters from charged tracks. The
peak corresponds to the energy deposited by a MIP particle in the calorimeter.
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KTEV Event Display

/usr/kpasa/chic01/mbarrio/pm
0_data_spool/kqh277.dst

Run Number: 9392
Spill Number: 180
Event Number: 35814097
Trigger Mask: 3
All Slices

 -  10.00 GeV

 -   1.00 GeV

 -   0.10 GeV

 -   0.01 GeV

 -  Cluster

 -  Track

Track and Cluster Info
HCC cluster count: 3
 ID    Xcsi    Ycsi   P or E
T 1: -0.2825  0.2298  +20.11
C 8: -0.2795  0.2464    8.52
T 2:  0.5099 -0.0607  -20.09
C 2:  0.5134 -0.0657    0.34
C 1:  0.3092  0.4177    3.34
C 3:  0.0735 -0.1808   12.49

C 4: -0.3263  0.2191    1.16
C 5: -0.3261  0.1494    0.63
C 6: -0.1752  0.2163    0.53
C 7: -0.2916  0.3472    0.83

Vertex: 2 tracks, 2 clusters
   X        Y       Z
 0.0959   0.0391  155.454
Mass=0.4980 (assuming pions)
Chisq=5.64  Pt2v=0.000017
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Figure 4.2: Sample event with one charged pion showering in the calorimeter, in the
upper right quadrant. Notice that it deposits a substantial amount of its energy in
the calorimeter (E/p ∼ 0.42).
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KTEV Event Display

/usr/kpasa/chic01/mbarrio/pm
0_data_spool/kqh277.dst

Run Number: 9392
Spill Number: 180
Event Number: 35800127
Trigger Mask: 3
All Slices

 -  10.00 GeV

 -   1.00 GeV

 -   0.10 GeV

 -   0.01 GeV

 -  Cluster

 -  Track

Track and Cluster Info
HCC cluster count: 2
 ID    Xcsi    Ycsi   P or E
T 1: -0.5395 -0.0341  +14.18
C 4: -0.5476 -0.0406    0.35
T 2:  0.3644  0.0304  -43.72
C 1:  0.3505  0.0361    0.51
C 2:  0.2408 -0.2338   13.27
C 3: -0.1123  0.3110    7.25

Vertex: 2 tracks, 2 clusters
   X        Y       Z
 0.1028  -0.0019  138.521
Mass=0.4954 (assuming pions)
Chisq=5.80  Pt2v=0.000021
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Figure 4.3: Sample “MIP”event in the calorimeter. Here both pions are minimum
ionizing. The higher momentum pion leaves a bit more energy than the lower energy
one, which might indicate that it showered some.
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did not fire. An inefficiency in MU2 could cause it not to fire, in which case a hit in
MU3 serves as a backup.

4.7.2 Veto Counters

The main veto cut in our analysis is Regenerator activity. Scattered events in the
Regenerator could “look” as if they were coming from the Vacuum beam. Such
events would normally have a big transverse momentum, and would be rejected by
this cut. Still we prefer to apply the cut to avoid any problems. No cuts are made
on BA or CA energies, as small pion showers could trigger these counters, and this
is not simulated in the Monte Carlo.

4.7.3 Aperture and Fiducial Cuts

The KTeV detector has a number of physical apertures which limit the acceptance
of π+π−π0 events. We know these aperture sizes and positions with good precision.
However, charged pion tracks can pass through some amount of matter leaving
little energy, which effectively reduces the efficiency of veto detectors, particularly
at the edges. To avoid having to simulate these edge effects, and to make sure
both apertures are the same in the data and Monte Carlo samples, we impose
slightly tighter clearance cuts than the ones defined by the apertures and detector
boundaries.

Lets first describe these cuts on charged pions. Tracks are required to be at least
3 mm away from the Mask Anti edges (see Figure 2.1). The tracking resolution at
the mask is roughly 2 mm in either direction. At the drift chambers, we require
that tracks do not pass through the “outer” edges (the definition of which varies
from chamber to chamber). Tracks are required to be a certain distance away from
each other at each chamber plane, to avoid problem events. A “Wire Centered Cell”
is defined as the hexagon, delimited by the high voltage wires, and centered in the
sense wires, see Figure 4.4. The separation requirement is that track cells are at
least 3 cells apart. This is the most natural way to avoid hits from two different
tracks being captured by the same sense wire. The cell separation cut eliminates
a substantial amount of events, particularly at drift chamber 1. Roughly 18% of
the data is eliminated by this cut. At the calorimeter, tracks are required to be
separated by at least 6 cm in the X direction and 3 cm in the Y direction, and
the actual distance between tracks is required to be at least 20 cm. They are also
required to be at least 2 mm away from the Collar Anti (the beamhole edge veto
counters) and 2.9 cm away from the Cesium Iodide Anti (the outer edge veto counter
in the calorimeter).

For the π0 , it is required that the photon’s “seed” crystal not be at the bound-
aries of the array. Boundary crystals are those around the beamholes and the outer
edges of the calorimeter. Photon clusters are not required to be separated at the
calorimeter.
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Figure 4.4: Cell separation cut diagram. These two tracks pass the cell separation
cut.
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Finally, we require the vertex to have 120 m< Zvertex < 158 m. This region
starts slightly upstream of the Mask Anti and extends down, almost reaching the
Vacuum window.

4.7.4 Extra Particle Cuts

Only two tracks are allowed in each event. However, extra calorimeter clusters are
allowed, as there can be satellite clusters from pions hitting the trigger hodoscopes.
Additionally, no extra γγ pairs are allowed. An “extra pair” is found if an extra
photon cluster is such that its Shape χ2 and Timing χ2 are within our cut constraints
(50 each), and its pairing with any of the other two photons results in an invariant
mass between 0.125 GeV and 0.145 GeV .

4.7.5 Track Quality Cuts

There are two indicators of good tracks: “Offmag-χ2”, which is a measure of how well
the tracks match at the magnet’s kick plane; and “Vertex-χ2”, which is a measure
of the quality of the vertex (based on the uncertainties resulting from chamber
hit topologies and the intrinsic resolution). These cuts are set at 500 and 100,
respectively, which is very loose and don’t have any effect (as we determined from
the systematic studies).

4.7.6 Photon Quality Cuts

Photon energies are required to be at least 3 GeV. This is done because there are
small differences between data and simulation for lower energy photons, so it is safer
to cut them away. It is important to mention that this cut is only applied to those
photons that form a good pair, i.e. have an invariant mass close to the π0 mass.
Extra clusters such as those coming from radiative events are not required to have
E > 3 GeV. Additionally, a “Shape-χ2” cut is applied. This quantity is a measure
of the photon cluster energy distribution, and is useful to reject events were an extra
photon overlays onto a π0 photon cluster. In π+π−π0 events, this can only happen
with either a radiative or an accidental photon. The cut is set very loose at 50.
Lastly, a “Timing-χ2” cut is applied, at a value of 50. These two cuts are extremely
loose, and they have no effect on the measured parameters, as determined in the
systematic studies.

4.7.7 Pion Identification Cuts

An E/p cut of 0.85 is applied to the charged tracks. The MIP cut previously
described makes this cut irrelevant since we do not have low momentum charged
pions in our sample. However, since an E/p < 0.9 cut is applied in Level 3, we
decided to leave this cut in.
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4.7.8 Kinematic Cuts

The most important kinematic cuts we apply are the constraints on the invariant
masses of the system

0.488 GeV < mπ+π−π0 < 0.508 GeV, 0.130 GeV < mγγ < 0.140 GeV. (4.4)

These two requirements by themselves make for a very clean π+π−π0 sample. Addi-
tionally, the transverse momentum is required to be P 2

t < 2.5×10−4GeV 2. Figure 4.5
shows the mass distributions obtained in data.

Additionally, the total energy of the kaon is required to be in the 40-160 GeV
range. The charge track momentum is required to be at least 10 GeV . This is
done to avoid the 8 − 10 GeV momentum region, where the MIP efficiency varies
considerably, as will be discussed in Section 6.1.

4.7.9 Kinematic boundary in the Dalitz Plane

Figure 4.7 shows how the data populate the Dalitz X, Y plane. The boundary
regions correspond to kinematic limits of the Dalitz variables. Any resolution dis-
crepancy between data and simulation is prone to be enhanced at these edges. For
this reason, we “mask” out these edges, keeping only the data inside the grid in
Figure 4.7. Figure 4.8 is a lego plot of the same distribution, with the mask applied.
The mask cuts away roughly 17% of the data.

4.8 Backgrounds

As mentioned previously, the stringent double mass constraint requirements make
this a very clean sample. It is extremely unlikely that these requirements would
be met by any other but π+π−π0 decays. Still, we could have some absorber or
collimator scatter background present. By extrapolating the exponential tail in
Figure 7.13 to the signal region, we estimate the level of background to be 0.16%.
The effect of the background on the fitted Dalitz parameters has been studied in
the systematics (Chapter 7) and found to be negligible.

4.9 Final Analysis Cuts

Table 4.1 summarizes the final analysis cuts. All these, except for the “MIP” cut,
were applied to the Monte Carlo generation as well, which will be discussed in
Chapter 5. Table 4.2 shows the final sample sizes for data and Monte Carlo.
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Figure 4.5: Invariant mass distributions for π+π−π0 and γγ in data. The dashed
lines indicate where the nominal cuts are made.
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in data. The dashed lines indicate analysis cut values.
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Figure 4.7: Dalitz plane distribution of data points. The grid represents the “mask”
used to select the bins for the nominal measurement.
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Figure 4.8: Dalitz plane distribution of data points, lego plot. Same plot as in
Figure 4.7, with the points around the boundary removed (i.e. including only points
selected by the mask.



46

Z vertex window 120.0− 158.0 m
Total energy 40.0− 160.0 GeV
Total P 2

t,tot < 2.5× 10−4

Vertex χ2 < 100.0
Offmag χ2 < 500.0
Number of tracks 2
Minimum track momentum 10.0 GeV
E/p for the tracks < 0.85
Track cluster energy cut (“MIP” cut) < 1.0GeV
Minimum X separation b/w tracks at CsI 6 cm
Minimum Y separation b/w tracks at CsI 3 cm
Minimum distance b/w tracks at CsI 20 cm
Minimum γ cluster energy 3.0 GeV
Timing χ2 < 50.0
Shape χ2 < 50.0
Minimum separation b/w tracks & photons 25 cm
γγ invariant mass window 0.130− 0.140 GeV
Veto cuts (VT0832) charge mode (see text)
Fiducial cuts (FID832) charge mode (see text)
CsI boundary cut all crystals in boundaries
π+π−π0 invariant mass window 0.488− 0.508 GeV
Number of extra γγ pairs 0
Cut on kinematic boundary mask (see text)

Table 4.1: Final selection cuts. Effect of cuts on the measured Dalitz parameters
was included into systematic uncertainty (see Section 7).

Data MC (v 5.06)
Final sample 1.62M 3.05M

Table 4.2: π+π−π0 event yields in data and Monte Carlo.



CHAPTER 5
DETECTOR SIMULATION

The KTeV Monte Carlo is a computer program which simulates kaon decays and
the response of the KTeV detector in considerable detail. It simulates decays with
the same energy and Z distributions as the data, and produces output that looks
essentially the same as real KTeV data, with a few extra data banks added to the
event format to store information about the original generated quantities, which can
be used for special studies. The Monte Carlo events are analyzed as if they were
data, with the same reconstruction algorithms and analysis cuts, except for the MIP
energy cut, which we will describe in Section 5.7.

The main use of the Monte Carlo simulation is to determine the acceptance of
our detector, i.e. the fraction all the possible π+π−π0 decays we actually recon-
struct. There are essentially two parts to the acceptance: geometrical, defined by
the apertures and geometrical selection cuts (e.g. particle separation cuts at various
detector systems); and detector efficiencies (the probability that a hit would be lost
in a given device). The Dalitz parameter measurement is directly dependant on
acceptance, there is double ratio cancellation, so it is extremely important that we
simulate the detector as accurately as possible.

The Monte Carlo simulation is also important for determining the effect of sys-
tematic uncertainties on the measured parameters.

5.1 Kaon Generation

The MC can generate a wide variety of kaon and hyperon decay modes. We will use
the KL → π+π−π0 decay mode for our measurement, to which we will add radiative
events using the PHOTOS [19] package.

5.1.1 Kaon Production

Simulation of an event begins by choosing a beam (left vs. right, and vacuum

vs. regenerated) and an initial kaon eigenstate (K0 vs. K0) 1. Next, the kaon
energy and production angle, relative to the primary proton beam, are chosen from
a combined distribution. This distribution was motivated by a parametrization by

1See Appendix A for a brief phenomenological description of the neutral kaon system.
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Malensek [20] of measurements of K+ and K− production by 450 GeV protons
incident on a beryllium target [21]. Using the valence quark content of the incident
proton as a guide, the forward production of neutral kaons is assumed to be related
to charged kaon production as follows:

K0 ∼ (K+ + K−)/2, K0 ∼ K−. (5.1)

The energy distribution given by this parametrization is modified by a polynomial
correction adjusted to match the distributions observed for KL → π+π− decays from
Vacuum beam data. This correction is within ±8% of unity across the whole energy
range (40-160 GeV). The KTeV neutral beams (after collimation) includes a range
of production angles, from 4.55 mrad to 5.05 mrad. The production model predicts
a variation of the flux and energy distribution over this range, and such variations
are observed in the data.

5.1.2 Kaon Transport

The kaon is assigned an initial position within the production target, with the trans-
verse distribution based on the size of the primary proton beam and an exponential
distribution along the length of the target based on the proton and kaon interaction
cross sections in Beryllium. The kaon is then propagated downstream toward the
detector. It first passes through the absorbers. There is a chance of scattering in the
absorber, in which case the kaon is given a transverse momentum chosen from an
exponential distribution before continuing downstream. The kaon is evolved from
the initial K0 or K0 states onto the two hamiltonian eigenstates KS and KL . A
very small amount of KS is left as we reach the decay region, except at very high
energies.

5.1.3 Kaon Decay

The kaon is forced to decay within a certain region of the detector, bigger than the
region selected for our measurement. The Z position for the decay is chosen from
the expected distribution for the energy of the generated kaon. This includes an
interference term between the KS and KL , but since there are so few KS left by
the time the fiducial region is reached, this is not an issue here.

The KL → π+π−π0 decay is modelled using the PDG-1994 [22] form factors. A
momentum configuration for the decay is picked based on the Dalitz distribution
given by

|M|2 = 1 + 0.67Y + 0.079Y 2 + 0.0098X2, (5.2)

where X and Y have already been defined in 1.4. To this event we add a radiative
component using the PHOTOS [19] package.
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After the decay products have been generated in the kaon rest frame, they are
boosted to the lab frame based on the generated kaon energy and direction.

5.1.4 Tracing the Decay Products

The products of each kaon decay (except neutrinos) are traced through the KTeV
detector in sections. A charged pion is permitted to decay to µν according to its
lifetime, and the muon is traced through the remainder of the detector. Charged
particles receive a transverse momentum kick from the analysis magnet, based on
a field-integral map which is a function of the transverse position of the particle at
the center of the magnet.

Charged particles undergo multiple scattering as they pass through the vacuum
window and the material in the spectrometer, with a GEANT-based parametrization
of a non-Gaussian scattering component. Photons are permitted to convert into
e+e− pairs.

Energy deposit in the photon-veto detectors and trigger hodoscope counters is
simulated during tracing. Depending on the trigger configuration in use, sufficient
energy deposit in a photon-veto detector can cause the event to be rejected imme-
diately, saving CPU time when simulating backgrounds with extra photons.

A particle (other than a muon) which hits a photon-veto detector or some passive
material, or any particle which escapes the detector volume, is no longer traced. The
user can specify that an event should be rejected immediately in such a case, which
can conserve CPU time when a physics signal mode is being generated.

The Monte Carlo stores the position of each particle at the drift chambers and
calorimeter for more detailed simulation later, as described in the sections below.
Tracing ends when a particle hits the calorimeter or the Back Anti, except for muons,
which are propagated through the downstream material (calorimeter and steel muon
filters) in a separate step.

5.2 Drift Chamber Simulation

The basic approach would be to calculate the distance to the closest wire in a given
sense plane and convert this to a drift time using the inverse time vs. distance
relationship measured in data. There are, however, a number of corrections that
need to be applied to this procedure. The original reason for this is the discrepancy
in the “Sum Of Distance” (SOD) distributions that had been observed between data
and Monte Carlo.

The high-SOD probability, i.e. the fraction of events where the SOD is higher
than the cell size, was observed to be higher in data compared to the Monte Carlo
simulation. In essence, the high-SOD problem stems from the fact that the drift
chamber system is not sensitive to the signal produced by one drift electron, as we
already explained. A track leaves a trail of ionization electrons in the gas, which
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are separated by a certain distance according to a Poisson distribution. For tracks
far away from the sense wire, most ionization electrons will arrive at the wire in a
relatively short time interval, giving a well defined, sharp pulse. For tracks very close
to the wire, the first drift electron arrives very soon in time, with the other electrons
trailing behind. This produces a different pulse shape, much broader than the one
from far away tracks. In principle, this is built into the time vs. distance relation, as
it is measured from data. However, since there are discrete electron contributions,
the pulse shapes from close tracks are not smooth, they exhibit a structure given by
the time differences with which electrons are collected by the sense wire. This results
in a broader distribution of possible trigger times, and increases the probability to
get a high SOD considerably. This has been modelled in the Monte Carlo in the
form of a “threshold curve”, which gives the triggering threshold as a function of the
high-SOD rate [23] measured in data. We also mentioned the position dependance
of the high-SOD probability, for which maps can be derived from data as well. These
give the high-SOD probability as a function of the wire and the position along the
wire. It has been observed that these maps show points along the wire where the
high-SOD rate is particularly high, probably corresponding to local defects along
the wire, or deposits of some sort.

The drift chamber simulation also includes a model for generating a “delta ray”
above a certain cutoff energy, which can produce an extra hit on a wire. This hit
may arrive before the hit from the original particle, causing the drift distance to be
underestimated when the event is reconstructed.

Finally, the Monte Carlo models the response of the discriminator cards to mul-
tiple pulses on a wire. This is important because an “accidental” hit before the
beginning of the in-time window can obscure the hit from the simulated particle.
The discriminators were designed to have a deadtime of about 50 ns, although lab
measurements show that the deadtime was more like 46 ns (i.e. 92 TDC counts),
falling exponentially after that. Sometimes a hit can prevent retriggering for an even
longer period of time, presumably due to a particularly broad analog pulse which
stays above the discriminator threshold longer than expected.

5.3 Calorimeter Simulation

The high precision of the Cesium Iodide calorimeter demands a very accurate de-
scription if its response. The main component of the calorimeter simulation are
the shower libraries. These are generated using the GEANT package [24], which
simulates all relevant interaction processes in the Cesium-Iodide. This is done in
the form of a shower library instead of direct GEANT simulation because doing it
event-by-event would be extremely taxing in terms of CPU time.
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5.3.1 Photon and Electron Showers

A library of 13×13 small crystals (each 2.5 cm×2.5 cm in size) is used to simulate
the calorimeter response to photons and electrons. The showers are generated at six
incident energies (2, 4, 8, 16, 32, and 64 GeV) and 325 incident positions (within
the central crystal in the 13×13 array). The information for each shower includes
the energy deposited in each crystal, as well as the longitudinal profile of the energy
deposited for the central 7×7 region (collectively) and the four crystals with the
most energy (individually).

The Monte Carlo selects a shower based on the incident position and energy.
It “interpolates” between the discrete shower energies in the library by randomly
selecting a shower with lower or higher energy than the actual particle energy, using
weights calculated from the logarithms of the energies; thus, the mixture of Monte
Carlo showers used is a continuous function of the energy of the incident particle .
For purposes of selecting a shower for a particle incident at an angle, the transverse
position is calculated at an appropriate depth within the crystal, roughly the energy-
weighted mean depth of the shower but with a correction determined from a study
of electrons incident at significant angles.

5.3.2 Pion Showers

A separate library is used to simulate pion showers. It was generated using GEANT
with the FLUKA package for hadronic interactions. A 41×41 small crystal array
is used in this case, which is considerably bigger than the photon case as pions can
generate big hadronic showers. Interactions with the hodoscope banks, which are
2 m upstream of the calorimeter face, are simulated as well. The incident pion
positions are chosen randomly in the upper right quadrant of the central crystal,
and classified according to a 3×3 grid (all other incident positions can be obtained
by suitable reflections along the vertical and horizontal axis). The momentum dis-
tribution used is that from Ke3 decays. The information for each shower includes
the energy deposited in each of the 1,641 crystals as well as the type of primary
interaction, and whether hadronic secondaries were produced. The library has a
total of about 900,000 shower events, separated in records with approximately 3,200
events each.

In the charged pion case, the Monte Carlo select a shower based on the position
of the incident particle at the central crystal and its momentum. To pick a shower,
we first determine the position of the incident pion within a 3×3 grid in the upper
right quadrant of the central (seed) crystal. We then smear the incoming pion’s
momentum by a gaussian function of width 5% the momentum. Finally, we pick
that shower whose position is within the same 3×3 cell in the upper right quadrant
and with the momentum closest to the smeared one we just obtained. Shower
energies are scaled by the ratio of the actual incoming momentum to the smeared
one used to pick the shower. The density of shower events, per record, is such that,
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in most cases, the discrepancy between the pion momentum and that of the shower
is less than 1 GeV.

In our analysis, we needed to modify the way these showers are picked because of
the MIP selection we require in data. This will be explained in detail in Section 5.7.

5.4 Veto Counters Simulation

Energy deposit by photons in the Mask Anti, Ring Counters, and Spectrometer Antis
is simulated with an energy-dependent Gaussian resolution, parametrized from data.
There is a fixed resolution for minimum-ionizing particles which varies from about
30-40%, depending on the counter.

Muons are traced through the steel muon filters and will reach the muon veto
hodoscope unless they are stopped in the steel. Energy loss in the steel is modelled
as Bethe-Bloch ionization loss, with Landau fluctuations from a parametrization
determined from studies with GEANT. We expect the simulation to do a reasonably
good job of reproducing the probability of a muon to be stopped as a function of
energy.

5.5 Accidental Overlays

Given the high flux of kaons and neutrons in the KTeV detector, it is natural to
expect some amount of underlying activity in the detector. Stray particles from
upstream hyperon decays, particles produced in the Regenerator, cosmic rays, and
other sources produce some underlying activity that sometimes does not trigger the
veto counters. This can lead to misreconstruction of tracks or increase the energy
in the calorimeter clusters.

We study this effect by “overlaying” an accidental event from the accidental
trigger on top of our good event. The accidental energies in detector elements are
added to the event’s energy, and the extra drift chamber hits are incorporated in
the event. It is important to note that the accidental trigger is proportional to the
instantaneous beam intensity in order to eliminate possible biases.

5.6 Trigger Simulation

The Monte Carlo simulates the behavior of all of the trigger elements, including the
hit-counting system (Banana and Kumquat modules), Y Track Finder, and HCC.
The hit-counting and YTF models are rather robust since their behavior depends
on digital information from the drift chambers, with only a few minor subtleties
having to do with the timing of accidental hits.

The trigger decision is made using the same trigger definitions as were used on-
line for the data collection. In fact, the same binary trigger-definition maps are
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used in the Monte Carlo, with software performing the memory lookups which were
originally done in hardware.

5.7 Generating MIP events in the Monte Carlo

We have chosen to use MIP charged pion events in our measurement to avoid
hadronic showers in the calorimeter. This keeps the shower products from contam-
inating the photon clusters, and also reduces the need to simulate precise shower
details. The standard way to pick a MIP event is to require that the energy of a
cluster associated with a charged track be ECsI <1 GeV, as we described already.
Since we make this MIP energy cut in data, we ought to make the same cut in our
Monte Carlo analysis. However, this presents a problem. Figure 5.1, top, shows a
data over Monte Carlo overlay after applying a MIP energy cut to both data and
Monte Carlo. The jumps that we see here are the combined result of both having a
finite number of showers in each momentum bin and cutting on a shower parameter.
During shower generation, the momenta are picked randomly from the Ke3 pion
momentum distribution 2. There will be a certain number of shower events that
fall within each momentum bin in Figure 5.1. If we do not cut on any parameters
associated with the showers (e.g. the energy deposited in the calorimeter), this mo-
mentum distribution will be continuous. However, if we cut on the shower energy,
we will cut slightly different amounts of events in consecutive track momentum bins.
This is because we have a finite number of showers in each bin, and it is most likely
that a slightly different number of showers will pass the cluster energy cut in con-
secutive bins. The relative difference in the number of showers that pass the cut in
consecutive bins is exactly the size of the jumps in the track momentum distribu-
tion. To get around this problem we modified the way a pion shower is picked from
the library. This is done in three steps:

1. Select a shower by picking a gaussian-blurred momentum around the generated
pion momentum (the width of this gaussian distribution is chosen to be 5% of
the incident pion momentum);

2. Require that the energy the shower deposits in the central 3×3 blocks cluster,
E3x×3, be less than 1 GeV;

3. If E3×3 >1 GeV, go back to the first step and pick a new shower.

The effect of this modification is seen in Figure 5.1, bottom plot. The key to the
solution is not to cut on shower energy in the Monte Carlo analysis since the Monte

2We use this distribution instead of a flat distribution to maximize the density of showers
in the most likely region for pion momenta. This does not bias the momentum distribution for
π+π−π0 events, as the momenta are picked by Monte Carlo during generation, independently of
what the shower momentum density is.
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Carlo is already a MIP sample by construction. The statistical effect just described
also appears (to a lesser degree) when we apply an E/p cut in Monte Carlo. The
magnitude of the effect is much smaller because only a very small fraction of shower
events will have E/p > 0.85. In this case the solution is also not to apply an E/p
cut to the Monte Carlo sample, which is fine since there is no Ke3 background to
reject anyway.

5.8 Acceptance in the Dalitz Plane

We generated ten million KL → π+π−π0 Monte Carlo events for this analysis. The
events were generated requiring that the charged pion energy deposited in a 3 × 3
grid, centered at the crystal hit by the pion, be less than our MIP cut, as was
explained in Section 5.7. Figure 5.2 shows the acceptance at different stages of
the simulation. We can see that the average Monte Carlo acceptance is about 6%
on average. However, this does not include the effect of the MIP cut applied in
data since this cut is not applied to the simulation. Since the probability that a
π+π−π0 event is MIP is about 11%, the acceptance in data, as deduced from this
Monte Carlo estimation, should be about 0.6%. This is in good agreement with the
ratio of final events to raw events in data (1.62 M events compared to 224 M events
in the split tapes, which gives roughly 0.7% acceptance).
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Figure 5.1: Track cluster energy cut in Monte Carlo. Top: Data over Monte Carlo
ratio plot using the standard shower library code. Bottom: The same distribution
after the modification described in Section 5.7. It is important to mention that this
is a single-entry plot, i.e. it is filled by randomly selecting only one of the two tracks
in the event. Note the rise at low momentum: we see this same feature in our data
MIP efficiency, but we chose not model it since the gain in data points is rather
small. For this reason we cut at 10GeV (arrow).
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Figure 5.2: Detector acceptance after the different stages of event processing. Top:
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forced to be MIP at generation level (see Section 5.7).



CHAPTER 6
DALITZ ANALYSIS

In this chapter we will get into some more detailed discussion about the main issues
in our measurement of the Dalitz parameters.

6.1 Efficiency of Minimum Ionizing Particles in the
Calorimeter

In the Dalitz measurement we require that the energy deposited in the calorimeter by
charged pions be less than 1GeV . As previously mentioned, we do this to eliminate
events where the charged pions showered extensively.

The probability that a charged pion will undergo hadronic interactions in the
Cesium-Iodide can be measured in data. For a single pion, this probability is roughly
2/3, so the probability to be MIP is roughly 1/3. We expect this probability to
be a function of the charged track momentum and the position of the track at
the calorimeter. In particular, we expect a noticeable difference in the boundary
between small and large crystals, as not only the crystals themselves, but the cluster
algorithm is different in each case: for small crystals, the clusters are defined by a
7 × 7 grid, centered in the seed crystal, whereas for big crystals, the clusters are
3× 3 in size, i.e. equivalent to a 6× 6 small crystal grid.

To determine the probability for a single track to MIP, we used a data sample
with no MIP energy cut, and determined the probability for a single track to deposit
and energy ECsI < 1GeV . Figure 6.1 shows the measured MIP efficiency for single
tracks at the calorimeter, as a function of the position and momentum of the charged
pion. We studied the 2D distribution of efficiency in the calorimeter and found no
feature mixing the X and Y position distributions in a non-trivial way. To include
this efficiency in the Monte Carlo simulation, we determined the momentum and
position dependance of the efficiency by the following procedure

1. Start with the Ptrk slope;

2. Add the X position dependance (using a parabola for small blocks and a
constant value for the big ones);

3. Compensate for the small remainder Ptrk slope (caused by the position cor-
rection).
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The first step involves incorporating the Ptrk slope in the Monte Carlo efficiency,
which has a value of (9.0± 1.4)× 10−4 1/GeV. Note that this slope is roughly three
times bigger than the one quoted in the fit in Figure 6.1. This is because we apply
a relative efficiency correction, normalized to one, instead of the absolute efficiency
shown in the plot. Also note that the denominator corresponds to data with an E/p
cut at 0.85. We cross-checked this slope with a sample with no E/p cut (from the
B01RAN triggers) and found no discrepancy with this result, within statistics.

Figure 6.2 shows how the position dependance changes when we do this. This is
because the outer regions of the calorimeter are preferentially illuminated by lower
momentum particles. The next step is to correct for the position dependance, for
which we used a parabola for the small crystal region, and a constant for the big
crystal region. This produces a residual Ptrk slope of (0.65 ± 0.4) × 10−4 1/GeV,
which is 1.5σ away from flat, so we compensated for this effect. The final result of
this is a flat distribution of the MIP probability as a function of both position and
momentum in the calorimeter, as shown in Figure 6.3.

We will study the effect introduced by incorporating the MIP efficiency in the
Monte Carlo when we study systematic effects.

6.2 Mass Constrained Vertex Reconstruction

One of the very nice characteristics of KL → π+π−π0 decays is that they are over-
constrained. It is possible to use a mass constraint to reconstruct some of the
kinematics based on some other kinematics. In fact, most of the previous determi-
nations of the Dalitz parameters were not able to reconstruct the π0 , and used these
kinematic constraints instead. We will make use of these kinematic constraints to
improve the reconstruction of the vertex position.

In standard tracking, the position of the vertex is reconstructed using the extrap-
olation of the charged tracks to a Z position that minimizes the distance between
them. This is not a good method of reconstruction when tracks have small opening
angles, particularly if the vertex is located in the upstream portion of the decay
region. It would also render bad results if any of the charged particles scattered at
the vacuum window.

To give an idea as to how this works, consider π+π− decays. It is possible to
determine the Z position of the vertex if we know the magnitudes of the momenta
and the position of the tracks at the vacuum window. From the kaon invariant mass
relation, we have

M2
K = (Pπ+ + Pπ−)2

= 2m2
π+ + m2

π+

(
pπ+

pπ−
+

pπ−
pπ+

)
+ 2pπ+pπ− (1− cosθ) + O

((
m
p

)4
)

,
(6.1)

where θ is the opening angle between the pions. Using this equation, if we know the
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Figure 6.1: “Minimum Ionizing Particle” (MIP) probability in the calorimeter. Top:
Single-track data MIP efficiency as a function of the X and Y positions of the track
at the calorimeter, left and right respectively. Note the difference between small
and large blocks. Bottom: Single-track data MIP efficiency as a function of track
momentum.
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Figure 6.3: Final MIP distributions after efficiency reweighting. By reweighting
the data distributions (event by event) by the MIP efficiency we determined, we
can check whether the effect is compensated for. These distributions are, within
statistics, flat.
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momenta of the charged pions and the position of the tracks at the vacuum window,
we can determine the Z position of the vertex.

For π+π−π0 events, a similar mass constraint can be derived (the details are
developed in Appendix C). It is slightly more complicated to impose the kaon mass
condition because the point at which the π0 intersects with the vacuum window is
determined by the vertex position itself. We start with the vertex calculated using
standard tracking. We then calculate the position of the π0 at the vacuum window,
and with that we calculate the new Z position of the vertex. This is iterated until
the discrepancy between the two is less than 1 mm. The method converges very
fast. Figure 6.4 shows the difference between generated and reconstructed Z vertex
positions for both standard tracking and the mass constraint method. The result
is that resolution is improved by a factor of two. One caveat of this method is
that the mass constraint requires an accurate charged momentum measurement for
the reconstruction of the vertex position. If there is a problem with momentum
reconstruction, such as a scale problem, this method of vertex reconstruction can
be biased. However, by the same token, even if there is a problem with momentum
reconstruction, imposing a mass constraint gives the most physical reconstructed
quantities, especially since the Dalitz variables Y and X are proportional to invariant
masses M(π+π−) and M(π+π0) − M(π−π0), respectively. The effect of using the
standard vertex reconstruction instead of this mass-constrained version is included
in the systematic uncertainties.

After an optimal Z position of the vertex is found, we determine the best X
and Y vertex positions. It is possible for a charged track to scatter at the vacuum
window. To first order, this would alter its direction but not the magnitude of the
momentum. In this case, the best X and Y position for the vertex would be given
by the extrapolation of the unscattered track to the Z position of the decay. We
consider three cases: the standard X,Y vertex position (the one given by standard
tracking) and the ones obtained by extrapolating each track back to the Z vertex
position. We then choose the best candidate based on which one has the smallest
total P 2

t . Figure 6.5 shows the improvement of the resolution, from about 0.85mm
to about 0.69mm, about 20%.

6.2.1 Resolution of the reconstructed Dalitz variables

We can estimate the resolution of the Dalitz variables X and Y in the same manner
that we estimated resolutions for the vertex reconstruction. Improving the vertex
reconstruction would not mean much to us if it did not influence the resolution of
the variables we use to fit the data. Figure 6.6 shows the improvement in resolution
afforded by the mass constrained vertex reconstruction.
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6.2.2 Data resolution

It is very important for our measurement that we get accurate charged particle
tracking information. It is also very important that resolution effects are simulated
correctly. We already showed that the mass-constrained vertex improves the Monte
Carlo resolution considerably. A good way to directly asses whether it also helps in
data, is to calculate the “missing particle momentum” defined by

pπ0‖ =
(m2

K −m2
π0 −m2

π+π−)− 4m2
π0 − 4m2

KP 2
t,π+π−

4
(
m2

π+π− + P 2
t,π+π−

) , (6.2)

where m2
π+π− is the invariant mass of the π+π− system, and P 2

t,π+π− is the component
of the π+π− system’s momentum, Pπ+π− , perpendicular to the kaon direction. The
quantity defined in Equation 6.2 is the component of the π0 momentum along the
kaon direction in a reference frame where the π+π− momentum is perpendicular to
the kaon direction, as shown in Figure 6.7 . In this particular reference frame, we
have Pπ+π− = Pt,π+π− . This frame is special because the longitudinal π0 momentum
should not depend on the actual value of Pt,π+π− , i.e. on the value of Pπ+π− . In
other words: if tracking was perfect, with infinite resolution, the quantity calculated
in Equation 6.2 would be the same for all values of Pπ+π− . The width of this
distribution is due to resolution. A data and Monte Carlo overlay tests how well
the tracking system, with its resolution effects, is simulated. Figure 6.8 shows such
an overlay in various situations. The agreement between data and Monte Carlo is
very good for our nominal analysis. Note also the improvement in resolution when
using the mass-constrained vertex instead of the standard vertex.

p
K

pπ0

pπ+π−

Figure 6.7: Diagram of momenta for “missing particle momentum” frame.
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6.3 Measurement of the Radiative Cross-section

The KTeV calorimeter is a very good tool for reconstructing photons. The MIP
sample we have used in the Dalitz analysis is also very suitable for measuring the
radiative branching ratio

Br =
Γ(KL → π+π−π0γ )

Γ(KL → π+π−π0 )
. (6.3)

This branching ratio was predicted back in 1996, using Chiral Perturbation The-
ory[7]. It is in itself a very interesting measurement, especially because there is good
acceptance cancellation between the two modes.

The cuts applied for this measurement are essentially the same as the nominal
cuts applied in for the Dalitz parameter measurement except for requiring an extra
cluster in the calorimeter, together with modified mass constraints (see Table 6.1).

The two mass constraints are designed to eliminate accidental photon events,
which can be mistaken for radiative events. The “out of mass” window cut reduces
the misidentification of radiative photons by identifying those π+π−π0 events which
make a “good” kaon mass. A more detailed discussion of this measurement can
be found in Appendix D. The main issue here is that, by comparing the data and
Monte Carlo energy distributions of radiative photons in the center of mass frame,
we have been able to determine a correction to the PHOTOS contribution. This
essentially amounts to increasing the amount of PHOTOS contribution by a factor
of 2. Details of this correction and the systematic uncertainty introduced to our
measurement will be discussed in Chapter 7.

6.4 Fitting the Dalitz Parameters

The Dalitz function 1.4 gives the probability distribution of π+π−π0 events in the
Dalitz phase space. Figures 4.7 and 4.8 show how the data populates the Dalitz plot
(there is no acceptance correction applied here). One possible way to calculate the
Dalitz parameters is to fit the Dalitz distribution to the acceptance corrected data.
In the i-th bin, the decay probability |Mi|2 would be

π+π−π0γ invariant mass window 0.49− 0.502 GeV
π+π−π0 invariant mass outside of the range 0.495− 0.500 GeV
Separation between radiative γ and tracks > 0.1 m
Extra cluster energy, in the lab frame > 0.5 GeV

Table 6.1: Extra/modified cuts applied in the radiative analysis.
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|Mi|2 =
NRec. data

i

Fdata

× 1

Acci

×BCi, (6.4)

where Fdata is the kaon flux, Acci is the acceptance, given by

Acci =
NRec. MC

i

NGen. MC
i

, (6.5)

and BCi is the “bin-center” correction given by

BCi =
|MMC(Yi, Xi)|2∫

i |MMC |2, , (6.6)

where MMC is the Dalitz distribution function used in the Monte Carlo simulation,
Yi and Xi are the value of the Dalitz variables at the center of bin i, and the
integral is taken across bin i. Combining formulae 6.4, 6.5, 6.6, and using that
NGen. MC

i =
∫
i |MMC |2 × FMC , where FMC is the kaon flux in the simulation, one

obtains

|Mi|2 =
NRec. data

i

NRec. MC
i

× FMC

Fdata

× |MMC
i |2. (6.7)

so that
|Mi|2
|MMC

i |2 =
NRec. data

i

NRec. MC
i

× FMC

Fdata

. (6.8)

The l.h.s. of Equation 6.8 is

|Mdata
i |2

|MMC
i |2 =

1 + gYi + hY 2
i + jXi + kX2

i + fXiYi

1 + gMCYi + hMCY 2
i + jMCXi + kMCX2

i + fMCXiYi

. (6.9)

To fit the Dalitz parameters we have to fit the function F(Yi, Xi; g, h, j, k), defined
by

F(Yi, Xi; g, h, j, k) =
1 + gYi + hY 2

i + jXi + kX2
i + fXiYi

1 + gMCYi + hMCY 2
i + jMCXi + kMCX2

i + fMCXiYi

, (6.10)

to the ratio of reconstructed data and reconstructed Monte Carlo histograms. This
is done by minimizing

L(g, h, k, ε) =
∑

i

1

σ2
i

(
NRec data

i

NRec MC
i (g,h,k)

− εF(Y, X; g, h, j, k, f)
)2

→ min . (6.11)

where σi is the statistical error in bin i.
Using this strategy, we first fit allowing all Dalitz parameters to float. Table 6.2

shows the values obtained in this case. The CP -violating parameters j and f are
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consistent with zero, so they will be fixed to zero for our nominal fit. Table 6.3
shows the nominal fit values.

g 0.7065± 0.0023
h 0.0963± 0.0034
j −0.00036± 0.0011
k 0.0216± 0.0011
f 0.0018± 0.0023

χ2 199.1 for 178 d.f.

Table 6.2: Dalitz parameter fit, allowing all parameters to float. Only statistical
errors are quoted here. The CP violating parameters j and f are consistent with
zero.

KTeV 1997
g 0.7065± 0.0023
h 0.0962± 0.0034
k 0.0216± 0.0011
χ2 199.8 for 180 d.f.

Table 6.3: Nominal Dalitz parameter fit. The CP violating parameters j and f have
been fixed to zero. Only statistical errors are quoted here.



CHAPTER 7
SYSTEMATIC STUDIES

The Dalitz parameter measurement depends to first order on an accurate detector
simulation. Figure 5.2 shows that the acceptance varies roughly by about a factor
of two across the Dalitz plane, and its biggest variation is in the Y direction, which
affects the linear slope parameter g directly.

7.1 Kinematic Limits for the Dalitz Variables

7.1.1 Charged Invariant Mass Resolution

The most important aspect for this analysis are systematic errors associated with
momentum measurement of the charged pions. For the π+π−π0 decay, the invariant
mass of the two charged pions, mπ+π− , has a maximum value which depends on
their transverse momentum squared, p2

t,ch, and is given by

m2
π+π− ≤

(
MK −

√
mπ2

0
+ P 2

t,π+π−

)2 − P 2
t,π+π− . (7.1)

Since

Y =
S3 − S0

m2
π+

=
m2

π+π− − S0

m2
π+

, (7.2)

this is also a kinematic limit for the Y Dalitz variable. Figure 7.1, top, shows
the distribution of Y for data as a function of P 2

t,π+π− . The solid line indicates the
kinematic limit. Events accumulate at the boundary because the boundary is a sym-
metric configuration in the π+π− momenta. Some events go past the boundary, as
can be more clearly seen in the lower plots. This is due to finite detector resolution.
Note also that, as we go higher in P 2

t , the limit for Y , Ymax, goes down. If it were
the case that only the absolute maximum value of Y was affected by resolution, this
would not really be an important issue, as we cut the kinematic boundaries away
for our measurement anyway. However, since Ymax spans all possible Y values, a
mismatch in the data and Monte Carlo reconstruction would produce a difference
in event migration all across the Dalitz plane, which could bias our measurement.
In Section 6.2.2 we analyzed how well the data and Monte Carlo resolutions match.
The same arguments apply here.
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Figure 7.1: Distribution of reconstructed values for the Y Dalitz variable. Top:
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7.1.2 Kinematic Limits in the Dalitz Plane: The Mask

Finite detector resolution leads to the event migration beyond the kinematic limit
in the X, Y Dalitz plane as well. To avoid events at the kinematic boundary, we
apply a mask to our Dalitz plot. This mask is determined by the requirement that it
eliminates those points around the kinematic boundary that either have much fewer
counts than its neighbors, or are very close to the kinematic boundary. Figure 4.7
shows the data, where the grid represents the selection mask. From this plot we
estimate that we cut away roughly 1-2 bins away from the kinematic boundary.
Each bin is roughly 0.2 units wide in the Dalitz variables X and Y , which are
adimensional. Since the Dalitz variables are in units of m2

π+ , this means we are
cutting events that are roughly closer than

√
∆s ∼ 0.06 GeV to the boundary. In

terms of the Dalitz variable resolution, which we estimated to be on the order of
0.01-0.02 (Figure 6.6), this boundary cut is safe. The effect of the mask is considered
in the systematic uncertainty, as shown in Figure 7.8. We evaluated the effect of
removing the mask altogether and also “tightening” the mask, by increasing the
distance we cut from the boundary to about 5 bins. Since the effect is small, within
statistics, we did not include it in the evaluation of the systematics.

7.2 MIP Efficiency Systematic

The MIP probability, as determined from data, was incorporated in the Monte Carlo.
It could be argued that, although a sample with a MIP energy cut is used to avoid
biases due to pions showers in the calorimeter, estimating the MIP efficiency using
non-MIP data (i.e. data with no MIP energy cut), effectively reintroduces whatever
bias we were trying to avoid. One way in which the non-MIP sample could be
biased is if the shower subproducts affect the photon clusters from the π0 . This
would be important during full reconstruction, as the energies associated with the
π0 would be biased. However, in the efficiency determination we only evaluate the
probability of single tracks to be MIP, disregarding whatever happens to the π0 .
To verify that there is indeed no bias, we calculated the data MIP efficiency with
these modifications:

• Eliminated the mπ0 and mK window cuts. In this case we obtain a Ptrk

efficiency slope of (−3.27 ± 0.47) × 10−4 c/GeV (to be compared with the
nominal (−3.05± 0.47)× 10−4 c/GeV value);

• Relaxing the track-photon separation cut to 25 cm (from the nominal 35 cm
used in the efficiency study). This results is a Ptrk slope of (−2.60 ± 0.29) ×
10−4 c/GeV.

Additionally, we studied the measured MIP efficiency as a function of the separation
between the charged tracks. This is important because a track’s probability to pass
the MIP energy cut might depend on whether the other charged track showers or
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not, especially when the two tracks are close together. To study this, we plotted
the MIP probability of one track when the other track does not MIP. We did not
find any dependance of the MIP probability as a function of track separation at the
calorimeter.

The systematic uncertainty associated with the MIP efficiency correction in the
Monte Carlo is evaluated by simply eliminating the efficiency correction rather than
considering the possible uncertainties in its determination. Its effect is smaller than
other systematics.

7.2.1 Selection cut systematics

The measurement of the Dalitz parameters can be biased if some of the selection
cuts reject π+π−π0 events differently in data and Monte Carlo. To analyze the
systematic effect of the analysis cuts, we considered the variation of the fitted Dalitz
parameters when we add all events eliminated by each cut. The basic assumptions
in such procedure are that

• There is no bias at the preselection level, i.e. the preselection cuts are not too
tight.

• The sample with one cut added is sufficiently free of background.

• Different cuts are not correlated.

The preselection cuts are indeed looser than the selection cuts, as we have verified.
Figure 7.8, left, shows the variation of the Dalitz parameters when we add all events
that did not pass the corresponding cut. We only show those cases in which the
effect is noticeable and/or the study would produce a direct effect on the Dalitz
parameters. One can see that most of the variations in the fitted parameters are
consistent with statistical fluctuations.

The quantity that stands out is the analysis with no MIP cut. This systematic
is evaluated by doing the analysis without a MIP cut (both in data and Monte
Carlo). We chose this procedure instead of one in which we would increase the
MIP energy selection cut because the shower distribution is spread over a broad
spectrum of energies. Increasing the track cluster energy cut from 1 GeV to, say,
2 GeV does not add many events to our sample, and we fail to really probe the
effect of big showers in the analysis. It is also important to mention that the sample
with no MIP cut does have an E/p cut at 0.85. We used B01RAN π+π−π0 events
to determine if a bias is caused by this cut, and we did not see any effect, within
statistics.

Other cut systematics are within the statistical uncertainty of our measurement.
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7.3 Discrepancies Between Data and Monte Carlo

7.3.1 Scales and Resolutions

We studied the systematics associated with photon reconstruction energy scales,
track momentum scales, and momentum resolution by reweighting the Monte Carlo
analysis. In the case of the track momentum scale, a shift of -0.09% was used, chosen
to make the data and Monte Carlo M(π+π−π0 ) overlays match. Additionally, a
smearing of 0.3% of the value of the momentum was chosen to make the widths
match, Figure 7.2, left. For the photon scale, we modified the scale by 0.1%, based
on the possible discrepancy in the M(γγ) invariant mass plot, Figure 7.2, right.

7.3.2 Drift Chamber Illumination

Figure 7.3 shows the data and Monte Carlo overlays for drift chamber illuminations.
We see a feature in the Y illumination, corresponding to an excessive loss of data
events close to the center of the chambers. Many possible causes have been studied:

• Fringe magnetic fields around the drift chambers;

• Magnetic field non-uniformities at the kick plane;

• Event loss as a function of track separation at the calorimeter (due to the MIP
energy cut);

• Drift Chamber alignment;

• Effect of Event Loss due to Cracks in the hodoscope bank and/or the calorime-
ter;

None of the above studies have proven to correct the illumination discrepancy. So
far, the only modification that has fixed the illumination problem is to assume that
the vertical dimension of one of the drift chambers is different from the nominal
value by about 100 µm/m.

To estimate the systematic error introduced, we reweighted the Monte Carlo
distribution such that the illumination by tracks at drift chamber 1 is flat. This
is the leading negative systematic for the slope parameter g (“negative” because it
pulls the value of g down), and is one of the most important issues to solve in the
future.

7.3.3 Energy and Track Momentum Slopes

The energy spectrum for kaon has been tuned using π+π− events. This tuning was
done some time ago. At the time of this writing, the π+π− kaon energy slope in the
data and Monte Carlo overlay is about (−3.5×10−4 1/GeV. In our analysis, we find
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Figure 7.2: Kaon and neutral pion reconstructed invariant masses.Left:
M(π+π−π0 ) invariant mass. Note the small data/Monte Carlo discrepancy and
the difference in resolution. Both these effects have been taken into account in the
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Figure 7.3: Drift chamber illumination by charged tracks, for the X view (top row)
and the Y view (bottom row). Notice the shape seen in DC1-Y , which has been
taken into account in the systematics.
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the energy slope for the nominal sample to be (−9.02±0.57)×10−4 1/GeV. If we do
not apply a MIP energy cut, the energy slope is (−8.45± 0.65× 10−4 1/GeV, which
is consistent with the MIP cut value. Moreover, if we increase the track-photon
separation cut to 35 cm (from the nominal 25 cm), we find that the energy slopes for
MIP and non-MIP cases are (−7.7±2.1)×10−4 1/GeV and (−5.6±2.7)×10−4 1/GeV,
which are consistent with each other and not far from the slope in π+π− events.
This shows that there is no substantial energy slope problem in our measurement.
Figure 7.5 shows the data and Monte Carlo overlay for energy. The systematics due
to this energy slope is estimated by reweighting the Monte Carlo.

As we already discussed, there is a track momentum dependance of the MIP
efficiency, which we have incorporated in the Monte Carlo. In spite of this, the
data and Monte Carlo overlay shows a track momentum slope. This might be a bi-
product of having a mismatch in the kaon energy spectrum. Indeed, if we reweight
the Monte Carlo analysis by the energy slope, there is a considerable change in the
momentum slope. A similar thing happens if we reweight the Monte Carlo by the
track momentum slope1. Figures 7.6 and 7.7 show the effect of reweighting by kaon
energy and track momentum, respectively.

The systematic associated with these slopes is shown in Figure 7.8. It is ob-
tained by reweighting the Monte Carlo such that we eliminate the energy and track
momentum slopes (separately). It is remarkable that the effect of reweighting the
energy in the slope parameter g is in the opposite direction compared to the effect of
reweighting by track momentum. This is, however, not completely unexpected, as
the change in phase space produced by reweighting by each track momentum versus
the change produced by applying a weight based on the total reconstructed energy
of the event is quite different.

7.4 “Half” Tests

To check the stability of the resulting Dalitz parameters the input data was divided
into statistically equivalent “halves” in various variables. The results of these tests
and the systematics are shown in Figure 7.9. The meaning of the half-sample labels
is as follows

• EK± — EK >< 62.4 GeV,

• Ptrk,min± — min |Ptrk| >< 16.0 GeV,

1Since there are two tracks in each event, it is not obvious how to reweighting the Monte Carlo.
We did so by reweighting by the product of the two slopes, considered independently. We checked
this by reweighting via a two-entry reweight function, with an equivalent result.
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Figure 7.6: Track momentum distribution, reweighted by the Kaon energy slope.

• Ptrk,max± — max |Ptrk| >< 26.0 GeV,

• Eγ± — min Eγ >< 7.0 GeV,

• In− bends/Outbends — Events with in-bend or out-bend tracks,
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Figure 7.7: Kaon energy distribution, reweighted by the track momentum slope.

• Zvtx± — Zvtx >< 133 cm,

• Xvtx± — Xvtx >< 0,

• Yvtx± — Yvtx >< 0,
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eliminating absorber scatters from the Monte Carlo simulation.
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We also studied the variation of the fit parameters with the run periods. Note
the variation in 97A, which is most likely correlated with the Y drift chamber
illumination discrepancy we already mentioned.
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Figure 7.9: Half-sample and run periods studies. Left: Effect of dividing the data
and Monte Carlo samples in half, for various physics distributions. Right: Fit for
different run periods (97A is the official split, all others are such that the sample
sizes are roughly the same.
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7.5 Radiative Corrections

The QED radiative corrections to the KL → π+π−π0 decay are small, as we have
determined in a previous study. However, they have a direct effect on the charged
invariant mass distribution, as the radiative photon takes some of the energy avail-
able to the final state pions. They also produce a (small) change in acceptance as the
radiative photon could hit a veto detector or produce a bias in the reconstruction.

The influence of the radiative corrections was studied with an implementation
of the PHOTOS [19] package into the Monte Carlo. PHOTOS is a calculation in
a leading log approximation of a single (or double) bremsstrahlung process taking
place in a decay chain. The virtual corrections to the Born level process are calcu-
lated numerically requiring cancellation of the infrared divergence for the total cross
section. The infrared cut off parameter was set to 1 MeV. The program was used
in single photon mode. The variable PARVAL of the radiative photon was set to 0
allowing the particle to be lost during the tracing through the detector.

To determine how well PHOTOS describes the radiative photon, we studied the
energy of the radiative photon in the Kaon center of mass frame. Figure 7.12,
top, shows the background subtracted data and generated PHOTOS distributions.
Signal Mote Carlo is normalized to the M(π+π−π0 ) mass peak. To determine
the background we generated non-radiative Monte Carlo, and required an extra
photon to be reconstructed. We then normalized it to the upper mass tail of the
M(π+π−π0γ ) distribution, as shown in Figure 7.11. The portion of the background
which gets into the signal region corresponds (mostly) to photons with ECM

γ <
0.01 GeV, as can be seen in Figure 7.12, where the shaded region represents the
background. It is critical then that we get this position of the background right, as
it affects the linear slope parameter g directly. Figure 7.12, bottom, shows the effect
of normalizing the background with photons with ECM

γ < 0.005 GeV (left) and
ECM

γ > 0.005 GeV (right). The normalization factors are 3.3 and 1.7, respectively.
We will take the first case as nominal, as it is the one that most influences our
signal region (because we apply a mass cut to reconstructed π+π−π0 events), and
the second case will be taken as a measure of the systematic uncertainty.

Figure 7.10 shows the invariant mass distribution for reconstructed π+π−π0 events.
Notice how the non-radiative Monte Carlo, the standard PHOTOS contribution, and
our reweighted distribution compare. Note also that the reweighting has been done
by studying the center of mass energy distribution of the radiative photon and not
by just matching the lower mass tail distribution shown here.

There is an additional effect we need to study. Since the cross-section is not
constant across the Dalitz plane, the level of radiation is different as well. PHOTOS
assumes a constant matrix element across the entire π+π−π0 phase space. This
means that the migration in the Dalitz plane due to radiative effects is different
in data and Monte Carlo, and could conceivably affect the Dalitz parameters. The
most important variation in the cross-section across the Dalitz plane is due to the
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slope parameter g. Since this parameter is associated with the Dalitz variable Y , it
is possible to estimate the effect of the migration produced by radiative photons on
the reconstructed Dalitz variables. The Dalitz variable Y is given by:

Y =
S3 − S0

m2
π+

=
(PK − Pπ0)2 − S0

m2
π+

, (7.3)

and, if the event is non-radiative, it reduces to:

Y NR =
m2

π+π− − S0

m2
π+

. (7.4)

To first order, we can calculate the effect of migration by reweighting the Monte
Carlo events by

Weight =
1 + gMCY

1 + gMCY NR
, (7.5)

where gMC is the Dalitz slope parameter used in the Monte Carlo generation and
Y NR is calculated as per Equation 7.4. The effect of such reweighting is very small,
as shown in Figure 7.8.

7.6 Backgrounds

No background subtraction is done in this analysis. Since vacuum beam events are
selected, the only possible backgrounds present would come from absorber scatters
and collimator scatters. These two are simulated in the Monte Carlo, and the
simulation is known to be good within 10%. Figure 7.13 shows the P 2

t distribution,
showing that data and Monte Carlo agree quite well. To evaluate the magnitude
of the systematic introduced by the absorber collimator scattering backgrounds, we
eliminated them from the Monte Carlo simulation and refitted the Dalitz parameters.
The shift produced by the collimator scattering background is negligible. The shift in
fitted parameters corresponding to absorber scatters was divided by 10, following the
fact that we simulate them with a 10% accuracy. The effect is shown in Figure 7.8.

7.7 Additional Sources of Systematic Biases

The Dalitz measurement depends to first order on the precise modelling of our detec-
tor. Any discrepancies between data and the simulation will affect the measurement
directly. It is then important to study all systematics due to scales and detector
sizes and positions.
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Figure 7.10: Low-mass radiative tail in data and Monte Carlo. This tail has contri-
butions from radiative events in which the radiative photon was not reconstructed.
Dots represent data. The dotted histogram is Monte Carlo with no radiative cor-
rections, the dashed histogram corresponds to the standard amount of PHOTOS
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contribution, as explained in the text.
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Figure 7.11: Invariant mass distribution for reconstructed π+π−π0γ events. The
dots correspond to data and the full histogram to reconstructed π+π−π0γ Monte
Carlo. The shaded region corresponds to background Monte Carlo, which is non-
radiative Monte Carlo with a reconstructed accidental photon, and normalized to
the upper mass tail. Note the background that creeps into the signal region: it
corresponds to those photons with low center-of-mass energy (see Figure 7.12).
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subtracted data, the solid line is the standard PHOTOS radiative contribution, nor-
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γ > 0.005 GeV one will
be used for systematics (see text for details).
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7.7.1 Drift Chamber System Alignment

The drift chamber system was carefully calibrated using muon runs with no magnetic
field applied. However, there are still some uncertainties regarding the position of the
drift chambers, particularly the Z positions, as they come from surveys and cannot
be determined from data. To evaluate these systematics, we considered possible
errors in the determination of certain quantities. We modified certain geometrical
parameters in drift chamber 2, leaving all other chambers untouched. The shifts we
considered are

δX 200 µm
δZ 4 mm
δθ 50 µrad

Non− orthogonality 200 µrad

(7.6)

None of these shifts produced a noticeable effect on the fitted Dalitz parameters.
Additionally, we considered a shift in the X target position of δXtarget = 150 µm,
which did not affect the fitted parameters in a noticeable way either.

7.7.2 Cracks in the Trigger Hodoscope Bank and the Calorimeter

The hodoscope bank is made up of scintillator paddles. There is a small gap between
paddles, and a particle can go through it. If this is not simulated correctly, a bias
can occur. We studied this bias by masking all the cracks out, i.e. eliminating all
events that where within 2 mm of a crack. This did not cause a substantial bias in
our measurement.

Similarly, the small gap between adjacent crystals in the calorimeter can cause
a bias: a particle can sneak through a gap, effectively depositing less than the
minimum 0.25 GeV energy in the calorimeter, resulting in the loss of this particle.
To estimate the possible bias from this effect, we masked out all crystal cracks by
requiring that tracks do not point anywhere closer than 2 mm from any cracks.
Again, no substantial systematic arises from this analysis. Both these studies are
shown in Figure 7.8.

7.8 Systematic Summary

We determined separate positive and negative systematic uncertainties for each of
the Dalitz parameters. The value of the systematic uncertainty takes into account
the statistical uncertainty. This is done by integrating a gaussian distribution with
a width equivalent to the systematic study’s width, and requiring that we integrated
are, from the nominal value to the systematic study’s value, be 67%. Finally, to
evaluate the total error, we added the biggest of the positive and negative systematic
uncertainty in quadrature with the statistical error.



CHAPTER 8
ANALYSIS OF OUR RESULT

We have measured the Dalitz parameters for the KL → π+π−π0 decay. We will
now show that the data fits the Dalitz distribution rather well, but it also seems
to indicate that our sensitivity might show higher order terms present in the Dalitz
cross-section.

8.1 Quality of Fit

Figure 8.1 shows the data and Monte Carlo overlay for invariant mass square of the
π+π− system, M2

π+π− , which is proportional to the Y Dalitz variable. The Monte

Carlo has been reweighted to the fitted Dalitz parameters. If the Dalitz functional
form fits the data well, this distribution would be flat, and within statistics it is.

However, this plot shows a slight feature: a small dip below 0.31GeV 2, followed
by a rise at the very end (notice that the kinematic boundary has already been cut
away). Figure 8.2, top center, shows this feature in much better detail. Projecting
all of the points onto the Y axis makes the effect less noticeable, as the outer bands
in X more or less compensate for the effect. It is very interesting to explore the
possible causes of this feature. It could of course be an acceptance problem, but it
is nonetheless important to examine this possibility.

8.2 Higher Order Dalitz Parameters?

A possible reason for the feature we have just pointed out is that we are sensitive to
higher orders in the expansion of the Dalitz cross-section. Looking at Figure 8.2, we
cannot help but wonder about a term of the form m Y 3. If we only consider higher
order terms that are non-CP violating, The Dalitz function, expanded to third order
in the Dalitz variables X and Y would have the form

|M|2 = 1 + gY + hY 2 + kX2 + mY 3 + nY X2, (8.1)

Table 8.1 shows the result of adding the Y 3 and Y X2 terms to the fit. The other
parameters in the Y Dalitz dimension are affected by this addition in a considerable
way. Notice the noticeable improvement in the fit χ2 from 199.8/180 to 181.9/178.
The systematics have been determined in the exact same way we determined them
for the nominal analysis.

92
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Monte Carlo, reweighted to the fitted Dalitz parameters. Note that the steps in the
distribution are due to the use of the mask to select the events we fit to in the Dalitz
plot. Bottom: data/MC distribution.
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Figure 8.3 shows the result of reweighting the Monte Carlo by the higher order
Dalitz function with the newly fitted parameters. The feature we saw in Figure 8.2
is pretty much gone, and the fits to constants are much better.

Once the systematic errors are taken into account, the n parameter is perfectly
consistent with zero, and the m parameter is roughly 1.5 standard deviations from
zero. This can hardly be considered proof that we are sensitive to higher order
terms, but it is nonetheless suggestive of higher order effects.

g 0.7168± 0.0057 (stat) + 0.0040 (syst)− 0.0099 (syst) = 0.7168± 0.0114
h 0.1069± 0.0045 (stat) + 0.0123 (syst)− 0.0042 (syst) = 0.1069± 0.0131
k 0.0219± 0.0011 (stat) + 0.0004 (syst)− 0.0024 (syst) = 0.0219± 0.0027
m −0.0172± 0.0056 (stat) + 0.0088 (syst)− 0.0050 (syst) = −0.0172± 0.0105
n 0.0036± 0.0026 (stat) + 0.0068 (syst)− 0.0024 (syst) = 0.0036± 0.0073
χ2 181.9 for 178 d.f.

Table 8.1: Higher order Dalitz parameter fit. We include the higher order terms in
Equation 8.1. The total error has been calculated as the sum (in quadrature) of the
statistical and the biggest of the positive or negative systematic errors.
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Figure 8.2: X and Y Dalitz variable data and Monte Carlo overlays. Top: Bottom:
Y slices projected onto the X axis. The Monte Carlo is reweighted to the nominal
fitted Dalitz parameters (g, h, k in Table 6.3). If the nominal fit function were
perfect, these plots would be flat. However, there are features in the Y Dalitz
projections, particularly i the middle plot. Notice the wiggle we see in the middle
plot and how well it fits a 3rd order polynomial. Bottom: Same but the projections
are now onto the X Dalitz variable, which are flat within statistics.
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Figure 8.3: X and Y Dalitz variable data and Monte Carlo overlays, with higher
order terms. The Monte Carlo has been reweighted by the higher-order fit distribu-
tion. Notice that the feature seen in Figure 8.2 is pretty much gone, and that the
χ2 is better.
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98

0.7

0.72

0.74

0 2 4 6 8 10 12 14 16 18 20 22 24 26

0.09

0.1

0.11

0.12

0 2 4 6 8 10 12 14 16 18 20 22 24 26

0.0175

0.02

0.0225

0.025

0 2 4 6 8 10 12 14 16 18 20 22 24 26
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CHAPTER 9
CONCLUSION

Using data from the 1997 KTeV experiment run, we have measured the Dalitz pa-
rameters for the KL → π+π−π0 decay. We find the following values for the measured
parameters

g = 0.7065± 0.0023 (stat) + 0.0074 (syst)− 0.0051 (syst) ,
h = 0.0962± 0.0034 (stat) + 0.0130 (syst)− 0.0031 (syst) ,
k = 0.0216± 0.0011 (stat) + 0.0004 (syst)− 0.0024 (syst) .

(9.1)

For the final result, we evaluated the systematic error for positive and negative
deviations separately. Only those deviations that are statistically significant have
been taken into account (see Figure 7.8). The final result is

g = 0.7065± 0.0077 ,
h = 0.096± 0.013 ,
k = 0.0216± 0.0026 .

(9.2)

For the slope parameter g, the leading positive systematic uncertainty comes from
the analysis of the sample with no “Minimum Ionizing Particle” (MIP) energy cut,
while the leading negative systematic uncertainty comes from the discrepancy in
Y illumination at the drift chambers. In each case, the total error is calculated
by taking the statistical error and the biggest of the two systematic uncertainties
and adding them in quadrature. Figure 9.1 shows a history of the measurements
of the Dalitz parameters. One should compare our result with the 1998 result from
CPLEAR [12], which is based on 500K events. The difference in statistical error
between their result and ours is consistent with our bigger 1.6 million events sample,
but their quoted systematic errors are generally smaller.

9.1 Theoretical Implications

9.1.1 Isospin Symmetries

The form factors for various K → π decays can be related by the isospin symmetry of
the 3π final state [5]. It may be possible to use Chiral Perturbation Theory to predict
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Figure 9.1: History of KL → π+π−π0 Dalitz parameter measurements. The error
bars indicate total errors, with small vertical bars indicating the statistical error
in the two most recent measurements. The dotted lines indicate the error band
according to PDG-2000 [8].
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ππ phase shifts near threshold1 [6]. This makes new and improved measurements
of the form factors for kaons to 3π final states very important and useful. Consider
the following quantities

R+−0 = h + 3k − g2

4cos2β
, R000 = 2h000 . (9.3)

where g, h, and k are the Dalitz parameters for π+π−π0 decays, β is a final state
strong interaction phase in π+π−π0 decays, and h000 is the quadratic Dalitz slope in
π0π0π0 decays. Isospin symmetry predicts that

R+−0 = R000 . (9.4)

Previous attempts at testing this relationship have assumed the phase shift β to be
negligible and have compared the values for the R+−0 and R000, obtained with the
measurements available at the time [5] (PDG-1990 [25]). This had shown remarkably
good agreement between R+−0 and R000. Table 9.1 shows the values of the R+−0 and
R000 parameters obtained for various experiments, assuming β = 0. For R000, the
values of h000 used are the ones corresponding to the E731 [26] and the NA48 [27]

experiments2. If the β = 0 assumption is correct, the values in the left column
should be the same as the ones in the right column.

Another approach is to use Equation 9.3 to determine the value of cos2β

cos2β =
g2

4 (h + 3k − 2h000)
. (9.5)

We can calculate the value of cos2β for the experiments considered in the mea-
surement of the π+π−π0 Dalitz parameters, taking the value of the quadratic 3π0

Dalitz slope, h000, as the weighted average between the E731 result, h000 = (−3.3±
1.3) 10−3, and the NA48 result, h000 = (−6.1± 1) 10−3, that is:

〈h000〉 = (−5.1± 0.8) 10−3. (9.6)

It is important to point out that the value of cos2β is not very sensitive to the value
of because this value is added together with h + 3k, which is about 30 times bigger
than h000.

Correlations between the g, h, and k parameters play an important role in the
determination of the systematic error for cos2β . If we take a look at the systematics
for the Dalitz parameters, Figure 7.8, we see that the two main systematics in g and

1low-energy ππ states

2The E731 measurement is the only h000 measurement in PDG, the NA48 measurement has
not been incorporated yet.
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R+−0 R000

PDG-94 −0.0064± 0.0095 −0.0066± 0.0026
CPLEAR-98 −0.0241± 0.0183
NA48-2001 −0.0122± 0.002

KTeV-97 run +0.036± 0.015

Table 9.1: R+−0 and R000 values calculated for various Dalitz measurements. Here
we have assumed the strong interaction final state phase β = 0. If this assumption
is correct, any of the values in the left column should be equal to the values in the
right column (and equal among themselves, of course).

h drive these numbers in the same direction. Since they are in the numerator and
denominator of Equation 9.5, the effect of a systematic, such as the analysis with
no MIP energy cut, tends to cancel out. This is indeed very nice, as the system-
atic biases in the measurement of cos2β tend cancels out in the ratio of parameters,
making this measurement less prone to acceptance problems. We evaluate the sys-
tematic errors in cos2β by calculating its value for each of the systematic studies,
just as we did with the Dalitz parameters themselves, and we obtain 3

cos2β = 0.729± 0.026 (stat) + 0.026 (syst)− 0.038 (syst)
= 0.729± 0.046 ,

β = 31.4◦ ± 3.0◦.
(9.7)

Figure 9.2 shows the cos2β values for the different experiments. Note that CPLEAR
gets a bigger error in this quantity than KTeV does 4. This is due to the way the
values of the actual parameters relate in the determination of cos2β and its error.
Moreover, we do not know what the correlations for various systematic studies are.
However, since CPLEAR’s error for the h parameter is much bigger than the other
two, the error would probably not change much should one consider the correlations.

Averaging all measurements, we get

cos2β = 0.798± 0.038 ,
β = 26.7◦ ± 2.7◦,

χ2 = 11.1 / 4 d.f.
(9.8)

3If we instead propagate from the total errors in g, h, and k, we obtain cos2β = 0.729± 0.080.

4From the CPLEAR Dalitz parameters, we get cos2β = 1.115± 0.185.
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Figure 9.2: cos2β values, calculated for various Dalitz parameters measurements.
The bands indicate the average and error (including the KTeV result). The smaller
error bars in the KTeV result denote the statistical error, while the total error bar
includes the systematic error.
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9.1.2 Higher Order terms in the Dalitz Distribution

In Chapter 8 we took a look at the possibility that our data could show sensitivity
to higher order terms in the Dalitz expansion in the X and Y Dalitz variables.
Having found a value for the Y 3 parameter that is 1.5 standard deviations from
zero, the evidence for higher order terms is suggestive rather than conclusive. It is,
nonetheless, an interesting possibility.

9.2 Final Comments

We determined the Dalitz parameters using data from KTeV’s 1997 run. Our sys-
tematic uncertainty could be improved if we understand the issues related to illu-
mination discrepancies and the analysis with no MIP energy cut.

Our measurement of the Dalitz parameters, together with theoretical efforts to
understand the KL → 3π final state phases, might provide some interesting physics
insight.



APPENDIX A
KAON PHENOMENOLOGY

To give a more complete picture of the KL → π+π−π0 decay, we would like to de-
scribe the kaon system in some more detail. This will allow us to understand why
the KL is the main contribution to π+π−π0 final states from neutral kaons.

A.1 Kaon Phenomenology

The formalism of neutral kaon decays into three mesons is covered in many arti-
cles [28] [5] [6], and we will not develop it here. We will highlight a few important
concepts and their relationship to neutral kaon decays into a three-pion final state.
Consider the eigenstates of the strong interaction Hamiltonian (HS), K0 and K0

|K0 〉 = |d s〉 , |K0 〉 = |d s〉 . (A.1)

Under a CP transformation, these states transform into each other

CP |K0 〉 = |K0 〉 , CP |K0 〉 = |K0 〉 . (A.2)

The weak interaction Hamiltonian (HW ), however, mixes these two states. To find
eigenstates of HW , let us first define two CP eigenstates in terms of K0 and K0

|K1〉 ≡ 1√
2

(
|K0 〉+ |K0 〉

)
(CP = +1),

|K2〉 ≡ 1√
2

(
|K0 〉 − |K0 〉

)
(CP = −1).

(A.3)

These are still eigenstates of HS because the strong interaction conserves CP (to
the best of our knowledge anyway). If CP were conserved by HW , these would have
to be eigenstates of it as well.

Lets consider the lifetime of these eigenstates. If CP were a good symmetry of
nature, K1 would only decay to states with CP = +1, i.e. two-pion states, whereas
K2 would only decay to states with CP = −1, i.e. a three-pion or a semileptonic
state. This would result in a big difference in lifetimes, as the phase space available
for a decay into two mesons is much larger than the one available for a three meson
final state. This is indeed the case: short-lived and a long-lived kaons have been
identified. It is then natural to associate these states with K1 and K2, respectively.
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However, in 1964 Cronin, Fitch and their collaborators [29] observed that it is
possible for a long-lived kaon to decay into a two-pion final state, effectively violating
CP symmetry. This means that CP is not a symmetry of HW , which in turn means
that the eigenstates are not CP invariant but rather are a mix of the two states K1

and K2. Since the number of events observed violating CP is small, the eigenstates of
HW have to be K1 (K2) with a small mixture of K2 (K1). Defining KS as the short-
lived of the two neutral kaons, and KL as the long-lived one, the (non-CP invariant)
eigenstates of HW are

|KS〉 = 1√
1+|ε|2 ( |K1〉+ ε |K2〉)

= 1√
2(1+|ε|2)

[
(1 + ε) |K0 〉+ (1− ε) |K0 〉

]
(A.4)

|KL〉 = 1√
1+|ε|2 ( |K2〉+ ε |K1〉)

= 1√
2(1+|ε|2)

[
(1 + ε) |K0 〉 − (1− ε) |K0 〉

]
(A.5)

where the ε parameter represents the mixing of the two CP states, and is of order
2× 10−3. Note that these states are still eigenstates of HS. The important issue we
want to focus on is that KS (KL ) are “almost” CP +1 (−1) states, as ε is a very
small number.

A.2 KL → π+π−π0

The first question we can ask is: Why consider only the KL decays to π+π−π0 ?
The short answer is that KS decays to three pions are either CP or kinematically
suppressed. There are two contributions to the CP eigenvalue of the final state.
First is the angular momentum. The kaon is a scalar particle, so the total angu-
lar momentum of the final state has to be zero. The pions are also scalar parti-
cles, but there is an orbital contribution to the total angular momentum. Since
the total angular momentum is zero, the relative angular momentum between the
π+π− has cancel the orbital angular momentum between the π+π− system and the
π0 . Say l is the value of this angular momentum. The eigenvalue of the C op-
eration on the π+π−π0 state is (−1)l, coming from the interchange of the charged
pions. On the other hand, the eigenvalue of the P operation is the product of the
intrinsic parities of the particles (−13) and the total angular momentum of the
system (which is zero). So CP has an eigenvalue of (−1)l+1. Now, since the sum
of the pion masses is close to the kaon mass, the states with angular momentum
l > 1 are kinematically suppressed. For l = 0, the KS → π+π−π0 decays are
CP suppressed. For l = 1, KS → π+π−π0 is not CP -suppressed but is kinemati-
cally suppressed. This shows that the KS contribution to the π+π−π0 final state is
strongly suppressed. Experimentally, the KL → π+π−π0 branching ratio is roughly
13% whereas the KS → π+π−π0 is about 4 × 10−7. For this reason, we will only
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consider KL decays in the measurement of the Dalitz parameters, we do not have
enough KS events to determine the CP violating component of the decay.



APPENDIX B
DATA CRUNCH

In this appendix we will give some details about the steps required to obtain the
final π+π−π0 sample for the Dalitz measurement.

B.1 Crunch from split tapes: First stage

We crunched over the entire 1997 π+π−π0 split tapes (KZP057 - KZP182), obtaining
a set of 20 output tapes (KQH270 - KQH289). There were no kinematic cuts applied
here except for a track-photon separation of 25cm. The Veto cuts applied are as
follows:

IOPTREG = 3,

USE_INTIME = T,

USE_MACOR = T,

USE_RCSRC = T,

USE_SASRC = F,

USE_MASRC = F,

USE_CASRC = F,

USE_BA1SRC = F,

USE_BA3SRC = F,

USE_REGSRC = F,

USE_DUMSRC = 7*F,

USE_RCNGH = F,

USE_SANGH = F,

USE_MANGH = F,

USE_CANGH = F,

USE_BA1NGH = F,

USE_BA3NGH = F,

USE_DUMNGH = 8*F,

USE_INPRS_DC4 = T,

USE_96PRL = F,

EVTO_RC_CUT = 1.0000000E+08,

EVTO_SA_CUT = 1.0000000E+08,

EVTO_MA_CUT = 1.0000000E+08,

EVTO_CA_CUT = 1.0000000E+08,
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EVTO_BA1_CUT = 1.0000000E+08,

EVTO_BA3_CUT = 1.0000000E+08,

EVTO_REG_CUT = 1.0000000E+08,

EVTO_REGPB_CUT = 1.0000000E+08,

EVTO_XCLUS_CUT = 1.0000000E+08,

VTO_NTRK_CUT = 10000.00,

VTO_NVVSRC_CUT = 10000.00,

VTO_INPRS_TOT_CUT = 10000.00,

VTO_INPRS_234_CUT = 10000.00,

VTO_NXCLIN_CUT = 10000.00,

ITHRESH_XRC = 0

For the Fiducial cuts, we have:

Mask clearance : 0.0030000

V0 clearance : 0.0020000

V1 clearance : 0.0020000

CA clearance : 0.0020000

CSI outside edge clearance : 0.0290000

CIA clearance : -10000.0000000

Track Sep (m) : -10000.0000000

Track Sep (Cells) : -10000.0000000

Track Sep (Wire centered cells): -999.0000000

Minimum beam distance (cells): -999.0000000

Maximum beam distance (cells): 9999.0000000

Min Ch 1 X edge dist (cells): 14

Min Ch 1 Y edge dist (cells): 46

Min Ch 2 X edge dist (cells): 40

Min Ch 2 Y edge dist (cells): 40

Min Ch 3 X edge dist (cells): 62

Min Ch 3 Y edge dist (cells): 26

Min Ch 4 X edge dist (cells): 50

Min Ch 4 Y edge dist (cells): 20

B.1.1 Special selection: Second stage

After the first crunch from the split tapes, we generated a second stage tape (KQH398)
with the following selection:

• Both tracks have Etrk,CsI < 1 GeV (our nominal sample); or

• Events pass a 5× prescale (for systematic studies).

Each of these two conditions was tagged using IEVTAG(4) bits (20 and 21, respec-
tively). These bits are normally used only in Monte Carlo, so it is safe to use them
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for tagging purposes. All other cuts, including Veto and Fiducial cuts, were the
same as in the crunch from the split tapes. From this tape we generated the ntuples
that we used for the final analysis.

B.1.2 Ntuple generation

From tape KQH398, we generated ntuples. The Veto cuts applied during ntuple
generation were:

IOPTREG = 3,

USE_INTIME = T,

USE_MACOR = T,

USE_RCSRC = T,

USE_SASRC = F,

USE_MASRC = T,

USE_CASRC = F,

USE_BA1SRC = F,

USE_BA3SRC = F,

USE_HASRC = F,

USE_REGSRC = F,

USE_DUMSRC = 7*F,

USE_RCNGH = F,

USE_SANGH = F,

USE_MANGH = F,

USE_CANGH = F,

USE_BA1NGH = F,

USE_BA3NGH = F,

USE_DUMNGH = 9*F,

USE_INPRS_DC4 = T,

USE_96PRL = F,

EVTO_RC_CUT = 1.0000000E+09,

EVTO_SA_CUT = 0.3000000 ,

EVTO_MA_CUT = 0.1000000 ,

EVTO_CA_CUT = 1000000. ,

EVTO_BA1_CUT = 1000000. ,

EVTO_BA3_CUT = 1.0000000E+08,

EVTO_HA_CUT = 1.0000000E+08,

EVTO_REG_CUT = 2.000000 ,

EVTO_REGPB_CUT = 0.7000000 ,

EVTO_XCLUS_CUT = 1.000000 ,

VTO_NTRK_CUT = 10000.00 ,

VTO_NVVSRC_CUT = 10000.00 ,

VTO_INPRS_TOT_CUT = 10000.00 ,
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VTO_INPRS_234_CUT = 10000.00 ,

VTO_NXCLIN_CUT = 10000.00 ,

ITHRESH_XRC = 0,

IHASRC = 0

whereas the Fiducial cuts were:

Mask clearence : 0.0030000

V0 clearence : 0.0020000

V1 clearence : 0.0020000

CA clearence : 0.0020000

CSI outside edge clearence : 0.0290000

CIA clearence : -10000.0000000

Track Sep (m) : -10000.0000000

Track Sep (Cells) : -10000.0000000

Track Sep (Wire centered cells): 3.0000000

Minimum beam distance (cells): 0.0000000

Maximum beam distance (cells): 9999.0000000

Min Ch 1 X edge dist (cells): 14

Min Ch 1 Y edge dist (cells): 46

Min Ch 2 X edge dist (cells): 40

Min Ch 2 Y edge dist (cells): 40

Min Ch 3 X edge dist (cells): 62

Min Ch 3 Y edge dist (cells): 26

Min Ch 4 X edge dist (cells): 50

Min Ch 4 Y edge dist (cells): 20

The resulting ntuples were used for the analysis. Notice the cell separation cut and
some of the other cuts, which in the ntuple stage have been tightened. In these
cases, the tightened cut did not reject events, but rather tagged them. We used
these tags to study systematics such as the cell separation cut.

As for Monte Carlo, the same Veto and Fiducial cuts were applied during the
generation crunch as in the first stage of the data crunching (no track-photon sep-
aration was applied though). The last stage, the generation of ntuples, used the
same Veto and Fiducial cuts as the corresponding stage in the data handling.



APPENDIX C
MASS CONSTRAINTS IN VERTEX

RECONSTRUCTION

In this appendix we will explain the details of vertex optimization in π+π−π0 events
using mass constraints.

Once we have identified a good event, it is possible to use mass constraints to
improve the determination of kinematic variables. This is particularly useful when
determining the vertex position in the decay region. To illustrate this, lets first
consider π+π− decays. In this case, it is possible to determine the Z position of the
vertex if we know the momentum and position of the tracks at the vacuum window
and impose the mass constraint

M2
K = (P1 + P2)

2 = 2m2
π+ +m2

π+

(
p1

p2

+
p1

p2

)
+2p1p2 (1− cosθ)+O




(
m

p

)4

 (C.1)

where θ is the opening angle between the pions. Using the above equation, we can
solve for the angle θ. However, this angle is also related to the distance between the
tracks at the vacuum, R12, and the distance from the vacuum window to the vertex,
ZV−W :

θ ≈ R12

ZV−W

. (C.2)

If we use the tracking information to find the position of the tracks at the vacuum
window, we can calculate the distance to the vertex.

In π+π−π0 events, it is possible to use a similar mass constraint requirement.
Figure C.1 shows the positions and angles of particles in the decay volume. The
mass constraint in Equation C.1 takes the form

M2
K = (P1 + P2 + P2)

2

= 2m2
π+ + m2

π0 + +m2
π+

(
p1

p2
+ p2

p1

)
+ m2

π+

(
p3

p1
+ p3

p2

)
+ m2

π0

(
p1

p3
+ p2

p3

)

+ 2 [p1p2 (1− cosθ12) + p1p3 (1− cosθ13) + p2p3 (1− cosθ23)] + O
((

m
p

)4
)

.

(C.3)
We also have

Rij ≈ ZV−W × θij , (C.4)

and we can make the approximation
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Figure C.1: Positions, angles, and distances of particles between the vertex position
and the vacuum window. The indices 1, 2, 3 correspond to pi+, pi−, pi0, respectively.

θ2
ij ≈ 2 (1− cos(θij)) . (C.5)

Multiplying Rij by pipj and adding, we get

R2
12p1p2 + R2

13p1p3 + R2
23p2p3 =

Z2
V−W × 2 [p1p2 (1− cosθ12) + p1p3 (1− cosθ13) + p2p3 (1− cosθ23)] .

(C.6)

The second term on the r.h.s. of the expression above can be obtained from Equa-
tion C.3. Once this is done, we can solve for Z2

V−W in Equation C.6, obtaining the
distance from the vertex to the vacuum window. There is a caveat: the point at
which the π0 intersects the vacuum window is determined using the position of the
vertex itself, so the solution to the problem is not so straightforward. The procedure
is as follows

1. Start from the standard vertex;

2. Calculate the position of the π0 at the vacuum window;
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3. Calculate the new vertex position using the mass constraint;

4. If the new and old vertex positions differ by more than 1 mm, go back to Step
2 and iterate.

This procedure converges very fast, rendering a very significant improvement in
resolution. This can be seen both when comparing reconstructed and generated
Monte Carlo distributions, as shown in Figure 6.4, and when comparing the “missing
particle momentum” resolution between data and Monte Carlo, as illustrated by
Figure 6.8.

There are a few reasons why this is a better way to determine the Z vertex:

• For small opening angles, the standard vertex, calculated by track extrapola-
tion, has a bigger uncertainty. This is especially important at the upstream
end of the decay region;

• Tracks can scatter at the vacuum window. Our method is impervious to this
problem;

One important difference between this method of obtaining the vertex position is
that the mass constraint requires an accurate charge momentum measurement. If
there is a problem with momentum reconstruction, such as a scale problem, the
vertex position calculated from the mass constraint can be biased. However, by
the same token one can argue that even if there is a problem with momentum
reconstruction, imposing a mass constraint renders the most physical reconstructed
kinematic quantities. The effect of using the standard vertex position reconstruction
instead of this mass-constrained version has been included in the systematic studies.



APPENDIX D
MEASUREMENT OF THE BRANCHING RATIO AND

FORM FACTORS FOR THE KL → π+π−π0γ DECAY

In this appendix we will describe the first measurement of the branching ratio of the
KL → π+π−π0γ decay. The analysis is based on the same data used for the Dalitz
measurement, where we used the MIP KL → π+π−π0 sample as a normalization
mode. We calculate the acceptance using the radiative corrections given by the
PHOTOS [19] package in the Monte Carlo simulation.

The motivation for this measurement is a theoretical paper published in 1996 [7]
which calculated the KL → π+π−π0γ branching ratio using Chiral Perturbation
Theory. The measured form factors and branching ratio are in good agreement
with this theoretical prediction. PHOTOS, on the other hand, predicts too few
radiative events. This issue will be discussed in detail.

D.1 Data Selection

We applied mostly the same selection cuts to the π+π−π0 and π+π−π0γ samples as
applied in the Dalitz analysis. Those cuts that are different are listed in Table D.1.
To identify π+π−π0γ events, we required an extra in-time cluster with a good shape
and timing χ2 and minimum energy of Emin > 0.5 GeV. We also required this cluster
to be separated from the other reconstructed particles in the calorimeter, as well as
the calorimeter edges. We have a total of 2586 events that passed all selection cuts.

Shape χ2 for all γ clusters < 20
Timing χ2 for all γ clusters < 5
Minimal extra cluster energy, lab Elab

γ,min > 0.5 GeV
Minimal extra cluster energy, CM ECM

γ,min > 0.010 GeV
Extra cluster/track separation 0.1m
Invariant mass of π+π−π0γ 0.49 < Mπ+π−π0

γ
< 0.502

Invariant mass of π+π−π0 Mπ+π−π0 < 0.495 or 0.500 < Mπ+π−π0

Table D.1: Special selection cuts for the radiative measurement.
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D.2 Monte Carlo Simulation

The Monte Carlo simulation was based on KTEVMC version 5.04. We used the
LPIMIP option to suppress simulation of pion showers instead of the standard pro-
cedure used in the Dalitz measurement.

To simulate radiative KL → π+π−π0γ events we used the PHOTOS [19] package.
The latter includes the calculation of bremsstrahlung contribution in Leading Log
Approximation. We used an infrared cutoff of 10 KeV. The Monte Carlo sample
statistics is about ten times the data.

We used the π+π−π0 Monte Carlo simulation for normalization and estimation
of the background due to accidental clusters. In this normalization sample, the
LPIMIP option was also used to avoid generation of pion showers.

D.2.1 PHOTOS reweighting

We found that the PHOTOS simulation predicts too few radiative events, as can
be seen in Figure D.1. In this plot the normalization is given by the mass sideband
in KL → π+π−π0 , which is used for background subtraction. As can be seen here,
the data exceeds the PHOTOS prediction by approximately a factor of two (for
ECM

γ > 0.01GeV ).
Apart from the normalization problem, PHOTOS describes the data reasonably

well, as shown by the distributions in Figure D.2. To correct for the normalization
mismatch, the Monte Carlo simulation has been scaled to match the data.

D.3 Background Estimation

We select radiative events by requiring that the additional photon, together with
the other particles in the event, form a good invariant mass for the originating
kaon. The main background is given by accidental clusters, which increase the total
invariant mass of the π+π−π0γ system by approximately their energy in the kaon
center of mass frame, ECM

γ . The extra cluster also leads to a p2
t imbalance. Given

the excellent invariant mass resolution for π+π−π0 events of the KTeV detector, it
is easy to obtain a very clean π+π−π0γ sample at relatively low ECM

γ .
We used non-radiative π+π−π0 Monte Carlo simulation with accidental clusters

from accidental overlays to estimate the background. We found that the timing χ2

distribution is poorly reproduced while the energy of the extra cluster is sufficiently
well described (see Figure D.3). Therefore we relaxed the timing χ2 cut for the
simulation and rely on the mass sideband for normalization.

Figure D.4 shows the invariant mass distribution for π+π−π0γ events, in bins
of ECM

γ . In this plot we relaxed the requirement that the π+π−π0 invariant mass
be outside a region around the kaon mass, i.e. Mπ+π−π0 < 0.495 or 0.500 <
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Figure D.1: Energy distribution of radiative photon in the center of mass. Left:
center of mass energy distribution of the radiative photon for data (dots) back-
ground Monte Carlo simulation (shaded histogram) and sum of PHOTOS radiative
Monte Carlo simulation and background (open histogram). The PHOTOS predic-
tion is normalized using non-radiative events. Right: ratio of data to Monte Carlo
simulation distributions.

Mπ+π−π0 . One can see here that the background and signal separate very cleanly

for ECM
γ > 0.01 GeV.

D.4 Angular distribution of the radiated photon

We studied the angular distribution of the radiative photon with respect to the
π+π− direction, in the π+π− center-of-mass frame. The photon is radiated by the
π+π− through bremsstrahlung, the direct emission part is known to be very small.
For this reason one would expect the angular distribution to be very similar to the
bremsstrahlung angular distribution for KS → π+π− , which is known exactly, and
is given by:

Brems =
1

p2
γ

x2(1 + x2)
sin2θ+−

γ

(1 + x2sin2θ+−
γ )2

(D.1)

where pγ is the momentum of the radiative photon; x is proportional the momentum
with which the charged pions are separating, i.e.:
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Figure D.2: Radiative sample control plots. Dots represent data, the shaded his-
togram represents background Monte Carlo simulation and the open histogram rep-
resents signal plus background Monte Carlo simulation. The background is normal-
ized to the π+π−π0γ invariant mass side band, see section D.3. The signal Monte
Carlo is scaled to match the data. From left to right, top to bottom the plots
show invariant mass distribution of π+π−π0γ particles, total transverse momentum
squared p2

t , X and Y illumination of photons at the calorimeter, cosine of the photon
angle with respect to the kaon direction in the kaon rest frame cos θ and invariant
mass distributions of charged pions.
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Figure D.3: Timing χ2 and extra cluster energy distributions. Data (dots) and
background Monte Carlo simulation (open histogram) distributions (left panel) and
for the energy (right panel) of the extra cluster.

x =
|~pπ+ − ~pπ−|

2mπ+

; (D.2)

and θ+−
γ is the angle between the radiative photon and the π+π− direction. The

momentum of the radiative photon is not only a function of x but also depends on
the momentum of the π0.

Now, if we look at this formula we see that, for very small x, the distribution
is very close to dipolar. This is what one would expect from the classical electro-
magnetic radiation of a dipole. However, for bigger values of x, the non-trivial part
of the denominator starts to kick in, favoring photon emission along the direction
of the outgoing pions. This is just a relativistic effect at high separation momen-
tum and can be derived from the Feynman propagator itself. Figure D.5 shows the
bremsstrahlung distribution fits to the data. We conclude that we understand the
radiative photon and it’s angular distribution.
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Figure D.4: Invariant mass distribution of π+π−π0γ as a function of photon energy
ECM

γ . Dots are data, open (gray) histogram shows Monte Carlo simulation of ra-
diative (non-radiative) π+π−π0 events. One can clearly see how the background
cleanly separates for higher energy photons.
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Figure D.5: Angular distribution of the radiative photon in the π+π− center-of-mass
frame. As can be seen in these plots, the theoretical bremsstrahlung distribution
describes the process quite well. In particular, take a look at the last plot. The fits
you see correspond, from top to bottom at θ+−

γ = 0, to: a pure dipole distribution
(sin2(x), χ2

ν = 2.2); our bremsstrahlung function (χ2
ν = 1.26); and a homogeneous

photon distribution (χ2
ν = 10.7). Note that the “fattening” that the bremsstrahlung

distribution predicts for high separation momentum between the pions matches that
of our data.
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D.5 Form Factor Measurement

To measure the branching ration of K → π+π−π0 γ decays we used the following
equation:

Br (π+π−π0 γ) =
N(π+π−π0 γ)

N(π+π−π0 )
× Accπ+π−π0

Accπ+π−π0
γ

×Br (π+π−π0 ) , (D.3)

where N(π+π−π0 γ), N(π+π−π0 ) are number of π+π−π0γ and π+π−π0 events re-
constructed, respectively; and Accπ+π−π0 , Accπ+π−π0γ are the respective accep-

tances for these modes, estimated using Monte Carlo simulation.
In general, given a simulation which describes the energy spectrum of the de-

caying kaons, EK , the acceptance Accπ+π−π0 is a function of two Dalitz variables

Figure D.6: Acceptance for radiative events. Top: invariant mass distribution of
charged pions for radiative (dots, ECM

γ > 0.01 GeV) and non-radiative (histogram)
π+π−π0 events (data). Bottom: Acceptance for reconstruction of π+π−π0γ events
as a function of ECM

γ and θ+−
γ .
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while Accπ+π−π0γ depends on five kinematic variables. On the other hand, in the

limit ECM
γ → 0, Accπ+π−π0γ can be factorized as:

lim
Ecm

γ →0
Accπ+π−π0γ = Accπ+π−π0 × Accγ (D.4)

where Accγ depends solely on the acceptance for reconstructing an extra photon in
the KTeV detector. For finite ECM

γ there are additional corrections, primarily due
to the change in the charged pions’ invariant mass distribution. This is illustrated in
Figure D.6 (left) where the invariant mass distribution of charged pions for radiative
and non-radiative π+π−π0 events are compared. The change in shape is due to
a different kinematic limit on Mch imposed by the energy taken by the radiative
photon.

Lets now concentrate on studying the radiative photon acceptance. The variables
that are best suited for this study are the radiative photon’s kinematic variables.
We will use the energy of the photon in the kaon rest frame, ECM

γ , and it’s an-
gle with respect to the π+π− direction, θ+−

γ (in the π+π− center-of-mass frame).
Figure D.6 shows the acceptance in these variables. As can be seen, the angular
acceptance averages out quite nicely. There is no rescaling in these plots. We rely
on the PHOTOS simulation for the other parameters that come into the acceptance
calculation. We have cross-checked PHOTOS using overlays of photon illumination,
photon direction in the kaon rest frame, and invariant mass distributions of charged
pions, see Figure D.2. Given the statistics of the data sample, data and Monte Carlo
simulation agree well.

As previously mentioned, there is a mismatch in the number of events generated
by PHOTOS and those we see in data (see Figure D.1). There should be no bias in
our calculations due to this mismatch, as both PHOTOS and reconstructed Monte
Carlo would be affected equally. To verify that this is the case we reweighted our
generated PHOTOS and the reconstructed Monte Carlo in ECM

γ bins, obtaining
a perfectly flat photon energy overlay between data and Monte Carlo. We have
included this effect in our systematic error calculations.

Figure D.7 (left) shows the measured π+π−π0γ form factor. There’s very good
agreement between our measurement and the theoretical prediction [7]. The right
plot shows data divided by the O(p2) QED prediction compared to the effect of the
next to leading order corrections. The current data precision does not allow one to
distinguish between the O(p2) and O(p4) calculations.

Combining the data from different ECM
γ bands, we measure a branching ratio

for the KL → π+π−π0γ decay of 1.35 ± 0.03(stat)) × 10−3 × Br(KL → π+π−π0 )
which agrees very well with the theoretical prediction.
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Figure D.7: Measurement of π+π−π0 γ form factor. Left: relative branching ratio of
π+π−π0 γ to π+π−π0 . Data (dots) is compared to the QED calculation (solid band).
Error bands correspond to statistical errors only. Right: data divided by O(p2) QED
prediction. The solid band shows ratio of O(p4) to O(p2) QED predictions [7]. Notice
that since the branching ratio decays exponentially, the value and error bands do
not really belong in the middle of the bins. However, the theoretical values and
error shown by the band are also bin-centered as they were calculated in the same
bin sizes.

D.6 Systematic Uncertainty

The systematic uncertainties in the branching ratio of the KL → π+π−π0γ decay
are due to imperfect cancellation of acceptances for radiative and non-radiative
π+π−π0 events 1. Accγ does not cancel in the ECM

γ → 0 limit. Therefore we studied
the uncertainties due to the photon energy scale, photon position reconstruction,
minimum photon energy cut and photon identification cuts (shape and timing χ2)
in detail.

To estimate the photon energy scale uncertainty we used the invariant mass
distribution of photon clusters from π0 decays, see Figure D.8. We fitted the data

1In contrast with the Dalitz measurement, which depends on acceptance to first order
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Figure D.8: Invariant mass distribution of two photons from the π0 decay. Dots show
the data, histogram corresponds to Monte Carlo simulation. Difference between
peak position corresponds to energy scale mismatch of 0.03%.

and Monte Carlo distribution around the peak region and found an offset consistent
with a 0.03% energy scale mismatch. To cover resolution and energy nonlinearity
effects, we estimate the energy scale uncertainty to be bellow 0.1%. Such a variation
of the scale changes the branching ratio by 0.08%.

To estimate the systematic uncertainty due to position reconstruction of the
photon, we moved the cluster center of gravity by 2 mm in X and Y , and changed
the size of the calorimeter by 1 mm, as limited by survey measurements. The
variation of the branching ratio due to this distortions is 0.15%.

The effect of minimum photon energy cut, the nominal cut being at Eγ >
0.5 GeV, was studied by varying it in the 0.35− 0.75 GeV region. As a systematic
error we assign the largest change in the branching ratio, which turns out to be
0.82%. This error also covers any possible inefficiency of the clustering algorithm.

We studied the efficiency of the shape and timing χ2 requirements (“photon
identification cuts”) using photon clusters from π0 decays. In the case of the nominal
shape χ2 < 20 cut, the inefficiency never exceeds a 0.5% level. The timing χ2

inefficiency is uniform in photon energy and is also about 0.5%. We found virtually
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no inefficiency in the case of the default Monte Carlo simulation. We corrected
the simulation for this efficiency difference. To check the validity of this efficiency
estimation procedure, we lowered shape χ2 cut down to 5. In that case we found
about 94% efficiency for Eγ < 1 GeV for data, which should be compared to about
98% efficiency for Monte Carlo, giving a correction of about 4%. Yet, we found
only a 0.45% change in the branching ratio due to this, so we assign this value as a
systematic error in this case.

Figure D.9 shows the resulting Br(π+π−π0 γ)/Br(π+π−π0 ) obtained from data
for different run periods and also for data sets broken into approximate halves.
One can see that the result fluctuates in accordance with statistical errors. The

Figure D.9: Half-sample studies. Variation of Br(π+π−π0 γ,ECM
γ >

10 MeV)/Br(π+π−π0 ) for data broken into different subsamples. The shaded band
shows the nominal result with it’s statistical uncertainty. The first five points show
results for five different run periods. The remaining points represent results for data
broken in approximate halves for: maximum of the charged pion momentum, min-
imum of the charged pion momentum, π0 energy, invariant mass of charged pions,
vertex Z position, track separation, vertex X position, regenerator position, cos of
the photon direction in the kaon rest frame, X and Y photon position at CsI, kaon
momentum.
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χ2/(n.d.f − 1) for half-studies is 19/23. We assigned a systematic error of 1.0%,
based on difference between the RMS of the distribution for all 24 tests compared
to one expected from statistical error.

Next comes the systematic error due to acceptance calculations. We observe
slopes in data and Mote Carlo simulations in π+π−π0 events for variables such as:
kaon energy; Z-position of the vertex; and charged invariant mass. To correct for
these discrepancies, one can reweight the π+π−π0 Monte Carlo distributions. Using
these reweighting slopes, we calculated their effect on Br(π+π−π0γ )/Br(π+π−π0 )
(independently), and we observe a total systematic bias of 0.4%. As for systemat-
ics in the π+π−π0γ acceptance, we studied the fluctuations introduced by binning
in both θ+−

γ and ECM
γ and by reweighting the ECM

γ distribution, obtaining a total
systematic uncertainty of 0.45%.

We also studied dependence of the branching ratio calculation on the Dalitz
parameters of the KL → π+π−π0 decay by changing them in the Monte Carlo sim-
ulation. We used two sets of Dalitz parameters for this study: the new PDG-2000
values [8] and those obtained in the main Dalitz analysis. The change in the branch-
ing ratio in these cases is bound by 0.15%.

Finally, to estimate the uncertainty due to background, we compared the branch-
ing ratio calculation with and without background subtraction. Due to the very low
background level, the result changes only by 0.15%.

To estimate total systematic uncertainty we added contributions from all dif-
ferent sources in quadrature. The overall systematic uncertainty comes out to be
1.64%.

The systematic uncertainties for each for the form factors where determined in
the same manner. We are not including those results in this appendix.

D.7 Conclusion

We performed a first measurement of branching ratio for the process KL → π+π−π0 γ.
We found that

Br(KL → π+π−π0 γ, Eγ > 10 MeV ) =
(1.35± 0.03(stat)± 0.02(syst))× 10−3 ×Br(KL → π+π−π0 )

(D.5)

or, in terms of absolute branching ratio:

Br(KL → π+π−π0 γ, Eγ > 10 MeV ) =
(1.66± 0.03(stat)± 0.03(syst)± 0.03(norm))× 10−4 (D.6)

which is in a good agreement with standard model calculation [7]:

Brtheor(KL → π+π−π0 γ,Eγ > 10 MeV ) = (1.65± 0.03)× 10−4 (D.7)
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Photon energy scale (∆E/E ∼ 0.001) 0.08%
Photon position reconstruction (∆R/R ∼ 0.001) 0.15%
Minimal photon energy cut (0.35− 0.75 GeV) 0.82%

Photon identification cuts 0.45%
Acceptance calculation 0.41%
“Half”-sample study 1.0%

Kaon energy reweighting 0.4%
Z vertex reweighting 0.002%
Mπ+π− reweighting 0.6%

PHOTOS γ energy reweighting 0.45%
Dalitz parameter change 0.15%
Background subtraction 0.15%

Total 1.64%

Table D.2: Systematic uncertainties for the radiative branching ratio measurement.

ECM
γ (MeV) Statistical Systematic

10-20 2.5% 1.8%
20-30 4% 1.9%
30-40 6.7% 2.5%
40-50 10% 6.7%
10-50 2% 1.64%

Table D.3: Statistical and systematic uncertainties for the radiative form factors.



APPENDIX E
POST-COMPLETION: MIP DISCREPANCY RESOLVED

This appendix was added after the completion of the thesis.
We have found the reason for the discrepancy in the Dalitz parameters deter-

mined from the samples with and without a MIP cut. Figure 7.8 shows a substantial
discrepancy between these two determinations, particularly in the g Dalitz param-
eter.

When reconstructing events, a separation of at least 25 cm is required between
the photon clusters and the tracks at the calorimeter. The extra γγ pair cut did
not require this for the extra cluster. A showering pion can create a slew of extra
clusters around the track position at the calorimeter. Since the MIP sample did not
have big charged pion clusters, it was not affected by this cut noticeably.

To resolve this problem, we require that the extra photon clusters considered for
the extra pair cut be separated by at least 25 cm from the charged tracks at the
calorimeter. With this additional requirement, both results agree perfectly, and the
systematic is somewhat reduced. Figure E.1 shows the systematic studies with the
correct extra pair cut. Figure E.2 shows the result of the parameters, as compared
to the other measurements.

The fitted Dalitz parameters are now

g = 0.7070± 0.0023 (stat) + 0.0034 (syst)− 0.0050 (syst) = 0.7070± 0.0055
h = 0.0966± 0.0034 (stat) + 0.0043 (syst)− 0.0030 (syst) = 0.0966± 0.0055
k = 0.0217± 0.0011 (stat) + 0.0004 (syst)− 0.0024 (syst) = 0.0217± 0.0027

(E.1)
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Figure E.1: Systematic tests. The MIP discrepancy has been fixed, compare to
Figure 9.1.
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Figure E.2: History of KL → π+π−π0 Dalitz parameter measurements. The MIP
discrepancy has been fixed, compare to Figure 9.1.
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